240155 Komplexe Geometrie I: Torische Varietäten (V) (SoSe 2024)

Contents, comment

Die Vorlesung wird eine Einführung in die Theorie der torischen Varietäten geben, einer Klasse algebraischer Varietäten, die mithilfe von Methoden aus der konvexen Geometrie und Kombinatorik beschrieben werden kann. Die Besonderheit dieser Klasse von Varietäten ist, dass man für torische Varietäten viele der abstrakten Konzepte aus der komplexen algebraischen Geometrie kombinatorisch explizit ausrechnen kann. Diese bilden dann einen idealen Testgegenstand für allgemeine Vermutungen und eine unerschöpfliche Quelle von expliziten Beispielen.

Diese Vorlesung stellt eine sehr gute Grundlage für das Bearbeiten einer Bachelor- oder Masterarbeit in unserer Arbeitsgruppe dar.

Requirements for participation, required level

Grundkenntnisse in algebraischer Geometrie (etwa im Umfang der üblichen einsemestrigen Vorlesung) sind sehr hilfreich, aber, bei entsprechender Motivation, nicht zwingend erforderlich.

Teaching staff

Dates ( Calendar view )

Frequency Weekday Time Format / Place Period  

Show passed dates >>

Subject assignments

Module Course Requirements  
24-M-P1 Profilierung 1 Profilierungsvorlesung (mit Übung) - Typ 1 Student information
24-M-P1a Profilierung 1 Teil A Profilierungsvorlesung (mit Übung) - Typ 1 Student information
- Graded examination Student information
24-M-P2 Profilierung 2 Profilierungsvorlesung (mit Übungen) - Typ 1 Student information
24-M-PWM Profilierung Wirtschaftsmathematik Profilierungsvorlesung (mit Übung) - Typ 1 Student information
- Graded examination Student information
24-M-S2-AL Spezialisierung 2 - Algebra Masterkurs 1 Algebra - Variante 1 Student information
24-M-S2-AN Spezialisierung 2 - Analysis Masterkurs 1 Analysis - Variante 1 Student information
24-M-V2-AL Vertiefung 2 - Algebra Masterkurs 1 Algebra - Variante 1 Student information
- Graded examination Student information
24-M-V2-AN Vertiefung 2 - Analysis Masterkurs 1 Analysis - Variante 1 Student information
- Graded examination Student information
24-M-VM1 Vertiefung Mathematik 1 Vertiefungskurs Mathematik 1 - Variante 1 Student information
- Graded examination Student information
28-M-SMTP Spezialisierung Mathematische und Theoretische Physik Spezialisierungskurs MP-M - Variante 1 Student information
- Graded examination Student information

The binding module descriptions contain further information, including specifications on the "types of assignments" students need to complete. In cases where a module description mentions more than one kind of assignment, the respective member of the teaching staff will decide which task(s) they assign the students.

Degree programme/academic programme Validity Variant Subdivision Status Semester LP  
Studieren ab 50    

No more requirements

E-Learning Space

A corresponding course offer for this course already exists in the e-learning system. Teaching staff can store materials relating to teaching courses there:

Registered number: 10
This is the number of students having stored the course in their timetable. In brackets, you see the number of users registered via guest accounts.
Address:
SS2024_240155@ekvv.uni-bielefeld.de
This address can be used by teaching staff, their secretary's offices as well as the individuals in charge of course data maintenance to send emails to the course participants. IMPORTANT: All sent emails must be activated. Wait for the activation email and follow the instructions given there.
If the reference number is used for several courses in the course of the semester, use the following alternative address to reach the participants of exactly this: VST_451856143@ekvv.uni-bielefeld.de
Coverage:
10 Students to be reached directly via email
Notes:
Additional notes on the electronic mailing lists
Email archive
Number of entries 1
Open email archive
Last update basic details/teaching staff:
Thursday, July 18, 2024 
Last update times:
Wednesday, April 17, 2024 
Last update rooms:
Wednesday, April 17, 2024 
Type(s) / SWS (hours per week per semester)
V / 4
Language
This lecture is taught in english
Department
Faculty of Mathematics
Questions or corrections?
Questions or correction requests for this course?
Planning support
Clashing dates for this course
Links to this course
If you want to set links to this course page, please use one of the following links. Do not use the link shown in your browser!
The following link includes the course ID and is always unique:
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=451856143
Send page to mobile
Click to open QR code
Scan QR code: Enlarge QR code
ID
451856143