1. Mannigfaltigkeiten: Differenzierbare Strukturen, Tangentialraum, Kotangentialraum, Untermannigfaltigkeiten, Riemannsche Metriken.
2. Flächen: Flächen im dreidimensionalen euklidischen Raum, Fundamentalformen, Gauß-Krümmung, Riemannsche Flächen, Riemannsche Krümmung, Theorema Egregium.
3. Differentialkalkül: Derivation, kovariante Ableitung, Lie-Ableitung, äußere Ableitung, Krümmungsform, de Rham Kohomologie.
4. Differenzierbare Bündel: Zusammenhänge, Krümmungstensor, Levi-Civita-Zusammenhang.
5. Integralsätze für Krümmungsterme.
Notwendig: Analysis 2, Lineare Algebra 2.
Hilfreich: Geometrie und Topologie 1.
Bär, Christian: Elementare Differentialgeometrie.
Berger, Marcel: A Panoramic View of Riemannian Geometry.
de Rham, Georges: Differentiable Manifolds.
Kobayashi, Shoshichi: Differential Geometry of Curves and Surfaces.
Kühnel, Wolfgang: Differentialgeometrie.
Frequency | Weekday | Time | Format / Place | Period |
---|
The binding module descriptions contain further information, including specifications on the "types of assignments" students need to complete. In cases where a module description mentions more than one kind of assignment, the respective member of the teaching staff will decide which task(s) they assign the students.
Degree programme/academic programme | Validity | Variant | Subdivision | Status | Semester | LP | |
---|---|---|---|---|---|---|---|
Studieren ab 50 |