300259 Die mehrfache Ersetzung fehlender Werte (multiple Imputationen) in komplexen Datenstrukturen (S) (SoSe 2020)

Contents, comment

Das Seminar behandelt statistische Verfahren zur Behandlung fehlender Werte in Datensätzen, die hierarchisch aufgebaut sein können und/oder mehrere Messzeitpunkte enthalten (z.B. Paneldaten). Aktuelle Verfahren zur Behandlung fehlender Werte können entweder modellbasiert oder datenbasiert sein (vgl. den Überblick im Reinecke 2014: 240). Zu letzterem zählen die multiplen Imputationsverfahren.
Die Seminarteilnehmer haben Gelegenheit, diese Verfahren anwendungsorientiert kennenzulernen. Die verwendeten Beispiele orientieren sich an dem Buch von Kleinke, Reinecke, Salfrán und Spiess (2020, insbesondere Chapter 5 und 6), welches rechtzeitig zum Beginn des Sommersemesters in gedruckter und elektronischer Form vorliegen wird.
Da mit R-Modulen gearbeitet wird, sollten die Seminarteilnehmerinnen und Seminarteilnehmer Grundkenntnisse in der Handhabung von Datensätzen in R haben und sich mit multivariaten Verfahren der statistischen Datenanalyse (z.B. multiple Regressionsanalyse, allgemeines lineare Modell) auskennen.

Bibliography

Alexandrowicz, R. (2013). R in 10 Schritten. Stuttgart: UTB.

Enders, C.K. (2010). Applied Missing Data Analysis. New York: Guilford.

Kleinke, K.; Reinecke, J.; Salfrán, D. & Spiess, M. (2020). Applied Multiple Imputation. Advantages, Pitfalls, New Developments and Applications in R. Heidelberg: Springer.

Reinecke, J. (2014). Strukturgleichungsmodelle in den Sozialwissenschaften. 2. Aufl. München: Oldenbourg.

Teaching staff

Dates ( Calendar view )

Frequency Weekday Time Format / Place Period  
weekly Di 10-12 X-D2-202 21.04.-14.07.2020

Hide passed dates <<

Subject assignments

Module Course Requirements  
30-M-Soz-M3a Soziologische Methoden a Seminar 1 Study requirement
Student information
Seminar 2 Study requirement
Student information
- Graded examination Student information
30-M-Soz-M3b Soziologische Methoden b Seminar 1 Study requirement
Student information
Seminar 2 Study requirement
Student information
- Graded examination Student information
30-M-Soz-M3c Soziologische Methoden c Seminar 1 Study requirement
Student information
Seminar 2 Study requirement
Student information
- Graded examination Student information
30-SW-ESo Empirische Sozialforschung Seminar 1 Study requirement
Student information
Seminar 2 Study requirement
Student information
- Graded examination Student information

The binding module descriptions contain further information, including specifications on the "types of assignments" students need to complete. In cases where a module description mentions more than one kind of assignment, the respective member of the teaching staff will decide which task(s) they assign the students.


No more requirements
E-Learning Space
E-Learning Space
Address:
SS2020_300259@ekvv.uni-bielefeld.de
This address can be used by teaching staff, their secretary's offices as well as the individuals in charge of course data maintenance to send emails to the course participants. IMPORTANT: All sent emails must be activated. Wait for the activation email and follow the instructions given there.
If the reference number is used for several courses in the course of the semester, use the following alternative address to reach the participants of exactly this: VST_204382634@ekvv.uni-bielefeld.de
Notes:
Additional notes on the electronic mailing lists
Email archive
Number of entries 0
Open email archive
Last update basic details/teaching staff:
Friday, January 24, 2020 
Last update times:
Tuesday, March 17, 2020 
Last update rooms:
Tuesday, March 17, 2020 
Type(s) / SWS (hours per week per semester)
seminar (S) / 2
Department
Faculty of Sociology
Questions or corrections?
Questions or correction requests for this course?
Planning support
Clashing dates for this course
Links to this course
If you want to set links to this course page, please use one of the following links. Do not use the link shown in your browser!
The following link includes the course ID and is always unique:
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=204382634
Send page to mobile
Click to open QR code
Scan QR code: Enlarge QR code
ID
204382634