300256 Methoden quantitativ: Einführung in R (S) (WiSe 2019/2020)

Contents, comment

Alternativ zu den in den Sozialwissenschaften weit verbreitet eingesetzten proprietären Statistikprogrammen (z. B. Stata, SPSS) existiert mit R eine freie Programmiersprache für statistische Berechnungen und Grafiken. Während R bspw. in der Mathematik, der Informatik und den Natur- und Wirtschaftswissenschaften häufig in der wissenschaftlichen Forschung und Ausbildung eingesetzt wird, spielt es in den Sozialwissenschaften eine eher untergeordnete Rolle.

Aufgrund der freien und kostenlosen Verfügbarkeit sowie der aktiven Nutzergemeinde, die oft für viele hochaktuelle Statistikprobleme Pakete entwickelt und Lösungen anbietet, ist R gerade für Studierende eine attraktive Alternative.

In diesem Kurs soll eine möglichst niedrigschwellige Einführung in die Nutzung von R gegeben werden.

Bibliography

Manderscheid, K. (2012): Sozialwissenschaftliche Datenanalyse mit R: Eine Einführung. Wiesbaden: VS

Teaching staff

Dates ( Calendar view )

Frequency Weekday Time Format / Place Period  

Show passed dates >>

Subject assignments

Module Course Requirements  
30-M-Soz-M3a Soziologische Methoden a Seminar 1 Study requirement
Student information
Seminar 2 Study requirement
Student information
- Graded examination Student information
30-M-Soz-M3b Soziologische Methoden b Seminar 1 Study requirement
Student information
Seminar 2 Study requirement
Student information
- Graded examination Student information
30-M-Soz-M3c Soziologische Methoden c Seminar 1 Study requirement
Student information
Seminar 2 Study requirement
Student information
- Graded examination Student information
30-M-Soz-M7a Sozialstruktur und soziale Ungleichheit a Seminar 1 Study requirement
Student information
Seminar 2 Study requirement
Student information
- Graded examination Student information
30-M-Soz-M7b Sozialstruktur und soziale Ungleichheit b Seminar 1 Study requirement
Student information
Seminar 2 Study requirement
Student information
- Graded examination Student information
30-M-Soz-M7c Sozialstruktur und soziale Ungleichheit c Seminar 1 Study requirement
Student information
Seminar 2 Study requirement
Student information
- Graded examination Student information
30-MeWi-HM4 Methoden der Medienforschung Lehrveranstaltung I Graded examination
Student information
Lehrveranstaltung II Study requirement
Student information
Lehrveranstaltung III Study requirement
Student information
31-SW-GdS Grundlagen der Statistik Statistische Software Study requirement
Student information
31-SW-StaM Statistische Methoden Statistische Software Study requirement
Student information

The binding module descriptions contain further information, including specifications on the "types of assignments" students need to complete. In cases where a module description mentions more than one kind of assignment, the respective member of the teaching staff will decide which task(s) they assign the students.


No more requirements
E-Learning Space
E-Learning Space
Address:
WS2019_300256@ekvv.uni-bielefeld.de
This address can be used by teaching staff, their secretary's offices as well as the individuals in charge of course data maintenance to send emails to the course participants. IMPORTANT: All sent emails must be activated. Wait for the activation email and follow the instructions given there.
If the reference number is used for several courses in the course of the semester, use the following alternative address to reach the participants of exactly this: VST_174450433@ekvv.uni-bielefeld.de
Notes:
Additional notes on the electronic mailing lists
Last update basic details/teaching staff:
Monday, June 17, 2019 
Last update times:
Tuesday, May 7, 2019 
Last update rooms:
Tuesday, May 7, 2019 
Type(s) / SWS (hours per week per semester)
seminar (S) / 2
Department
Faculty of Sociology
Questions or corrections?
Questions or correction requests for this course?
Planning support
Clashing dates for this course
Links to this course
If you want to set links to this course page, please use one of the following links. Do not use the link shown in your browser!
The following link includes the course ID and is always unique:
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=174450433
Send page to mobile
Click to open QR code
Scan QR code: Enlarge QR code
ID
174450433