240021 Maß- und Integrationstheorie (V) (WiSe 2016/2017)

Contents, comment

Was ist der Rauminhalt einer Vollkugel? was ist die Oberfläche eines Rettungsringes? und vor allem, was soll die Antwort "5" auf so eine Frage eigentlich bedeuten?

In der Maß- und Integrationstheorie geht es darum, den Begriff des Volumen zu erhellen. Unter welchen Umständen läßt sich eine Volumenmaß einführen, und welche Wege stehen dazu zur Verfügung?

Im Vordergrund steht dabei der endlich-dimensionale euklidische Raum. Hier steht uns das Lebesque-Maß zur Verfügung. Ebenso möchte ich die Integration von Differentialformen behandeln. Damit werden dann auch Inhalte krummer Flächen zugänglich.

Bibliography

Measure and integration : a concise introduction to real analysis / Leonard F. Richardson (https://katalogplus.ub.uni-bielefeld.de/title/2233305)

Introduction to Measure Theory and Integration / by Luigi Ambrosio, Giuseppe Prato, Andrea Mennucci (https://katalogplus.ub.uni-bielefeld.de/title/2242485)

Maß- und Integrationstheorie / von Jürgen Elstrodt (https://katalogplus.ub.uni-bielefeld.de/title/2204301)

Maß- und Wahrscheinlichkeitstheorie : Eine Einführung / von Norbert Kusolitsch (https://katalogplus.ub.uni-bielefeld.de/title/2355145)

Measure Theory : Second Edition / by Donald L. Cohn (https://katalogplus.ub.uni-bielefeld.de/title/2322279)

weitere folgen

External comments page

https://www.math.uni-bielefeld.de/~bux/masz_und_integral/

Teaching staff

Dates ( Calendar view )

Frequency Weekday Time Format / Place Period  

Show passed dates >>

Subject assignments

Module Course Requirements  
24-A1 Advanced Module Mathematics 1 Aufbaumodul Mathematik 1 Vorlesung gemäß Modulbeschreibung Student information
- Graded examination Student information
24-A2 Advanced Module Mathematics 2 Aufbaumodul Mathematik 2 Vorlesung gemäß Modulbeschreibung Student information
- Graded examination Student information
24-B-MI_ver1 Measure and Integration Theory Maß- und Integrationstheorie Maß- und Integrationstheorie Graded examination
Student information
24-E Supplementary Module Mathematics Ergänzungsmodul Mathematik Vorlesung gemäß Modulbeschreibung Student information
24-SE Structured Electives Strukturierte Ergänzung Vorlesung 1 Student information
Vorlesung 2 Student information

The binding module descriptions contain further information, including specifications on the "types of assignments" students need to complete. In cases where a module description mentions more than one kind of assignment, the respective member of the teaching staff will decide which task(s) they assign the students.

Degree programme/academic programme Validity Variant Subdivision Status Semester LP  
Mathematik (Gym/Ge als zweites U-Fach) / Master of Education (Enrollment until SoSe 2014) M.M.05; M.M.07 Wahlpflicht 3. 7 benotet  
Mathematik (Gym/Ge fortgesetzt) / Master of Education (Enrollment until SoSe 2014) M.M.07 Wahlpflicht 1. 7 benotet  
Studieren ab 50    

No more requirements
E-Learning Space
E-Learning Space
Address:
WS2016_240021@ekvv.uni-bielefeld.de
This address can be used by teaching staff, their secretary's offices as well as the individuals in charge of course data maintenance to send emails to the course participants. IMPORTANT: All sent emails must be activated. Wait for the activation email and follow the instructions given there.
If the reference number is used for several courses in the course of the semester, use the following alternative address to reach the participants of exactly this: VST_78824653@ekvv.uni-bielefeld.de
Notes:
Additional notes on the electronic mailing lists
Email archive
Number of entries 0
Open email archive
Last update basic details/teaching staff:
Monday, June 6, 2016 
Last update times:
Tuesday, November 29, 2016 
Last update rooms:
Tuesday, November 29, 2016 
Type(s) / SWS (hours per week per semester)
lecture (V) / 4
Department
Faculty of Mathematics
Questions or corrections?
Questions or correction requests for this course?
Planning support
Clashing dates for this course
Links to this course
If you want to set links to this course page, please use one of the following links. Do not use the link shown in your browser!
The following link includes the course ID and is always unique:
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=78824653
Send page to mobile
Click to open QR code
Scan QR code: Enlarge QR code
ID
78824653