241104 p-Laplacian – Analysis and Numerics (VÜA) (SoSe 2025)

Contents, comment

In this lecture we study the p-Laplace system, which is a non-linear
generalization of the Laplace equation. We study questions of analysis
as well of numerical analysis. Students with a background in PDE or in
numerics of PDE are very welcome. Depending on the background of the
participants, I will add extra introductory material to the lecture.
We will also address a few related topics from functions spaces.

Teaching staff

Dates ( Calendar view )

Frequency Weekday Time Format / Place Period  
weekly Mo 14-16 V5-148 07.04.-18.07.2025
not on: 4/21/25 / 6/9/25
weekly Di 16-18 V5-148 07.04.-18.07.2025

Hide passed dates <<

Subject assignments

Module Course Requirements  
24-M-M3 Mathematics 3 Mathematics 3 Mathematics 3 - Variant 1 Student information
- Graded examination Student information
24-M-P1 Profile Module 1 Profilierung 1 Profilierungsvorlesung (mit Übung) - Typ 1 Student information
24-M-P1a Profile Module 1, Part A Profilierung 1 Teil A Profilierungsvorlesung (mit Übung) - Typ 1 Student information
- Graded examination Student information
24-M-P1b Profile Module 1, Part B Profilierung 1 Teil B Profilierungsvorlesung (mit Übung) - Typ 1 Student information
- Graded examination Student information
24-M-P2 Profile Module 2 Profilierung 2 Profilierungsvorlesung (mit Übungen) - Typ 1 Student information
24-M-PWM Profile Module Economic Mathematics Profilierung Wirtschaftsmathematik Profilierungsvorlesung (mit Übung) - Typ 1 Student information
24-M-S2-AN Spezialisation Courses in Analysis Spezialisierung 2 - Analysis Masterkurs 2 Analysis - Variante 1 Student information
24-M-S2-ND Spezialisation Courses in Numerical Analysis and Discrete Mathematics Spezialisierung 2 - Numerische und Diskrete Mathematik Masterkurs 2 Numerische / Diskrete Mathematik - Variante 1 Student information
24-M-V2-AN Advanced Analysis Vertiefung 2 - Analysis Masterkurs 1 Analysis - Variante 1 Student information
- Graded examination Student information
24-M-V2-ND Advanced Numerical Analysis and Discrete Mathematics Vertiefung 2 - Numerische und Diskrete Mathematik Masterkurs 1 Numerische / Diskrete Mathematik - Variante 1 Student information
- Graded examination Student information

The binding module descriptions contain further information, including specifications on the "types of assignments" students need to complete. In cases where a module description mentions more than one kind of assignment, the respective member of the teaching staff will decide which task(s) they assign the students.

Degree programme/academic programme Validity Variant Subdivision Status Semester LP  
Mathematik / Promotion Subject-specific qualification   1 aktive Teilnahme  

No more requirements
Moodle Courses
Moodle Courses
Address:
SS2025_241104@ekvv.uni-bielefeld.de
This address can be used by teaching staff, their secretary's offices as well as the individuals in charge of course data maintenance to send emails to the course participants. IMPORTANT: All sent emails must be activated. Wait for the activation email and follow the instructions given there.
If the reference number is used for several courses in the course of the semester, use the following alternative address to reach the participants of exactly this: VST_516790042@ekvv.uni-bielefeld.de
Notes:
Additional notes on the electronic mailing lists
Email archive
Number of entries 1
Open email archive
Last update basic details/teaching staff:
Tuesday, January 7, 2025 
Last update times:
Friday, April 11, 2025 
Last update rooms:
Friday, April 11, 2025 
Type(s) / SWS (hours per week per semester)
lecture with exercises (VÜA) / 4
Language
This lecture is taught in english
Department
Faculty of Mathematics
Questions or corrections?
Questions or correction requests for this course?
Planning support
Clashing dates for this course
Links to this course
If you want to set links to this course page, please use one of the following links. Do not use the link shown in your browser!
The following link includes the course ID and is always unique:
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=516790042
Send page to mobile
Click to open QR code
Scan QR code: Enlarge QR code
ID
516790042