392117 Vertiefung Maschinelles Lernen (V) (WiSe 2023/2024)

Short comment

Erste Vorlesung am Donnerstag, 19.10.2023

Contents, comment

Aufbauend auf dem Grundlagen-Modul "Neuronale Netze und Lernen", welches die grundlegende Theorie des maschinellen Lernens sowie einige grundlegende Ansätze behandelt hat, werden in diesem Modul thematische Vertiefungen zu folgenden Themenfeldern behandelt: Repräsentationen, Transformer-Architekturen für Sequenzen, Generative Modelle (Autoregressiv und GAN), Neuronaler Computer, Reinforcement-Lernverfahren, Ausgewählte Theorieaspekte, Learning to Learn (Meta-L, One/Few-Shot-L), Ausblick und aktuelle Trends.

Building on lecture "Neuronale Netze und Lernen" this module offers advanced methods in these topic areas: representations, sequence-to-sequence transformer architectures, generative models (autoregressive and GAN), neural computer, reinforcement learning methods, selected theory aspects, learning-to-learn (meta-L,one/few-shot L), outlook and current trends.

Bibliography

Ian Goodfellow, Yoshua Begio, Aaron Courville: Deep Learning, Springer
Bishop, Ch., "Pattern Recognition and Machine Learning", Springer
Sutton & Barto, "Reinforcement Learning: An Introduction", MIT Press
& weiterführende Literatur in den Themenkapiteln

External comments page

http://www.zfl.uni-bielefeld.de/studium/module/techfak/msc_isy/#vertiefung_maschinelles_lernen

Teaching staff

Dates ( Calendar view )

Frequency Weekday Time Format / Place Period  

Show passed dates >>

Subject assignments

Module Course Requirements  
39-M-Inf-AI-adv-foc_ver1 Advanced Artificial Intelligence (focus) Advanced Artificial Intelligence (focus): Vorlesung Graded examination
Student information
39-M-Inf-AI-bas Basics of Artificial Intelligence Basics of Artificial Intelligence: Vorlesung Student information
- Ungraded examination Student information
39-M-Inf-VML Vertiefung Maschinelles Lernen Vertiefung Maschinelles Lernen Student information

The binding module descriptions contain further information, including specifications on the "types of assignments" students need to complete. In cases where a module description mentions more than one kind of assignment, the respective member of the teaching staff will decide which task(s) they assign the students.


No more requirements
E-Learning Space
E-Learning Space
Address:
WS2023_392117@ekvv.uni-bielefeld.de
This address can be used by teaching staff, their secretary's offices as well as the individuals in charge of course data maintenance to send emails to the course participants. IMPORTANT: All sent emails must be activated. Wait for the activation email and follow the instructions given there.
If the reference number is used for several courses in the course of the semester, use the following alternative address to reach the participants of exactly this: VST_426073026@ekvv.uni-bielefeld.de
Notes:
Additional notes on the electronic mailing lists
Last update basic details/teaching staff:
Monday, December 4, 2023 
Last update times:
Friday, August 11, 2023 
Last update rooms:
Friday, August 11, 2023 
Type(s) / SWS (hours per week per semester)
lecture (V) / 2
Language
This lecture is taught in english
Department
Faculty of Technology
Questions or corrections?
Questions or correction requests for this course?
Planning support
Clashing dates for this course
Links to this course
If you want to set links to this course page, please use one of the following links. Do not use the link shown in your browser!
The following link includes the course ID and is always unique:
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=426073026
Send page to mobile
Click to open QR code
Scan QR code: Enlarge QR code
ID
426073026