Jedes Semester
5 Leistungspunkte
Die Angaben zur Moduldauer finden Sie bei den Studiengängen, in denen das Modul verwendet wird.
Studierende erwerben grundlegende Kompetenzen in den Bereichen der Künstlichen Intelligenz und des Maschinellen Lernens, die zur Entwicklung intelligenten, adaptiven und interaktiven Verhaltens von Systemen notwendig sind. Nach Abschluss des Moduls haben Studierende grundlegendes Wissen erworben um moderne Methoden des Maschinellen Lernens und der KI für die Entwicklung intelligenter Systeme anzuwenden. Das Modul eignet sich dafür, spezielle fehlende Grundlagenkompetenzen im Bereich Artificial Intelligence zu ergänzen.
Das Modul vermittelt grundlegendes Wissen notwendig für das Verständnis und die Anwendung der Methoden des Maschinellen Lernens und der Künstlichen Intelligenz. Zu den Lehrinhalten des Moduls gehören z.B. Grundlagenveranstaltungen aus den Bereichen: Computer Vision, Machine Learning, Artificial Intelligence, Deep Learning, Reinforcement Learning, XAI, Cognitive Computing, Models of Decision Making, Neural Networks, Auditory Data Science, Interactive and Autonomous Learning. Die konkreten Lehrinhalte des Moduls werden durch die vom Studierenden gewählten Veranstaltungen festgelegt. Die Wahl aus dem dafür ausgewiesenen Lehrangebot erfolgt nach persönlichem Interesse.
—
—
Bei den Veranstaltungen können folgende Kombinationen aus dem Bereich Basics Artificial Intelligence alternativ studiert werden:
Modulstruktur: 1 uPr 1
zusammen mit der zugehörigen Übung aus dem Bereich Basics of Artificial Intelligence zu studieren.
zusammen mit einer zugehörigen Übung aus dem Bereich Basics of Artificial Intelligence zu studieren.
Bei Absolvierung des Moduls mit Seminar + Übung
Portfolio mit Abschlussprüfung bestehend aus:
1) Portfolio von Übungen zu Inhalten des Seminars
Übungsaufgaben oder Programmieraufgaben, die veranstaltungsbezogen gestellt werden (Bestehensgrenze 50% der erzielbaren Punkte). Die Kontrolle der Übungsaufgaben umfasst auch direkte Fragen zu den Lösungsansätzen, die von den Studierenden in den Übungen beantwortet werden müssen. Der*die Lehrende kann ein individuelles Erläutern und Vorführen von Aufgaben verlangen sowie einen Teil der Übungsaufgaben durch Präsenzübungen ersetzen. Die Übungsaufgaben im Rahmen des Portfolios werden in der Regel wöchentlich ausgegeben und dienen dem begleitenden Erlernen selbständiger Umsetzungen der im Seminar/in der Vorlesung vorgestellten Lerninhalte. Eine weitergehende Konkretisierung insbesondere zum zeitlichen Umfang der Abschlussprüfung erfolgt in der Beschreibung der Veranstaltung.
2) einer Abschlussprüfung zum Seminar
Die Abschlussprüfung zu den Inhalten des Seminars nimmt Bezug auf die Übungs- oder Programmieraufgaben oder entwickelt sich aus den in den Übungen erlernten Kompetenzen.
Seminar: Referat (im Umfang von 30–40 Minuten) mit Ausarbeitung (Umfang von 5–10 Seiten)
Die Studierenden präsentieren nach Abstimmung der konkreten Aufgabenstellung mit dem Prüfenden im Rahmen des Referats die Bedeutung und systematisch-fachwissenschaftliche Einordnung einer im Seminar behandelten Problemstellung und erläutern und stellen ihr Thema in ihrer Ausarbeitung schriftlich vor, wobei Aspekte aus der Diskussion im Seminar einzubeziehen sind. Die Aufgabenstellung kann auch die Ausarbeitung einer Anwendung (d.h. Programmierung/Rechnung etc.) eines Verfahrens auf einen typischerweise praktisch bedeutsamen Einzelfall beinhalten. Das Referat mit Ausarbeitung bezieht sich auf die im Seminar vermittelten und in den Übungen erarbeiteten Inhalte.
Beide Portfolioelemente werden durch eine*n Prüfer*in geprüft. Es erfolgt eine abschließende Gesamtbewertung.
Bei Absolvierung des Moduls mit Vorlesung + Übung
Portfolio mit Abschlussprüfung bestehend aus:
1) Portfolio von Übungen zu Inhalten der Vorlesung
Übungsaufgaben oder Programmieraufgaben, die veranstaltungsbezogen gestellt werden (Bestehensgrenze 50% der erzielbaren Punkte). Die Kontrolle der Übungsaufgaben umfasst auch direkte Fragen zu den Lösungsansätzen, die von den Studierenden in den Übungen beantwortet werden müssen. Der*die Lehrende kann ein individuelles Erläutern und Vorführen von Aufgaben verlangen sowie einen Teil der Übungsaufgaben durch Präsenzübungen ersetzen. Die Übungsaufgaben im Rahmen des Portfolios werden in der Regel wöchentlich ausgegeben und dienen dem begleitenden Erlernen selbständiger Umsetzungen der im Seminar/in der Vorlesung vorgestellten Lerninhalte. Eine weitergehende Konkretisierung insbesondere zum zeitlichen Umfang der Abschlussprüfung erfolgt in der Beschreibung der Veranstaltung.
2) einer Abschlussprüfung zur Vorlesung
Die Abschlussprüfung zu den Inhalten der Vorlesung nimmt Bezug auf die Übungs- oder Programmieraufgaben oder entwickelt sich aus den in den Übungen erlernten Kompetenzen.
Vorlesung: Abschlussklausur (im Umfang von 90-120 Minuten) oder mündliche Abschlussprüfung (im Umfang von 20-30 Minuten) zu den in der Vorlesung vermittelten und in den Übungen erarbeiteten Inhalten.
Die Klausur kann alternativ als eKlausur, Open Book Klausur oder eOpen Book Klausur geprüft werden. Im Falle von Open Book Klausur und eOpen Book Klausur beträgt der Umfang 120-150 Minuten Minuten.
Beide Portfolioelemente werden durch eine*n Prüfer*in geprüft. Es erfolgt eine abschließende Gesamtbewertung.
Studiengang | Empf. Beginn 3 | Dauer | Bindung 4 |
---|---|---|---|
Intelligente Interaktive Systeme / Master of Science [FsB vom 16.05.2023 mit Änderungen vom 15.12.2023 und 01.04.2025 und Berichtigung vom 16.07.2024] | 1. | ein Semester | Wahlpflicht |
In diesem Modul kann eine automatische Vollständigkeitsprüfung vom System durchgeführt werden.