Achtung: Auf dieser Seite wird ein auslaufendes Modulangebot angezeigt.
Auslaufendes Angebot
10 Leistungspunkte
Die Angaben zur Moduldauer finden Sie bei den Studiengängen, in denen das Modul verwendet wird.
Studierende erwerben fortgeschrittene theoretisch-methodische Kentnisse in den Bereichen der Künstlichen Intelligenz und des Maschinellen Lernens, die zur Umsetzung intelligenten, adaptiven Verhaltens und der Interaktionsfähigkeit von technischen Systemen notwendig sind. Nach Abschluss des Moduls sind Studierende in der Lage moderne daten- oder modellbasierte Methoden der KI/des Maschinellen Lernens (z.B. Deep Learning, Reinforcement Learning, Probabilistische Modelle, XAI) anzuwenden. Im ersten Modulteil wird theoretisch-methodisches Wissen zu einem der Themenbereiche der Advanced Artificial Intelligence erworben und in begleitenden Übungen eingeübt. Im zweiten Modulteil werden diese Verfahren in einem Seminar vertieft. Sie haben dazu sowohl theoretisch-methodisches Wissen als auch die Kompetenz der selbstständigen Auseinandersetzung mit einem Thema (Einarbeitung, Bewertung, Umsetzung, mündliche Präsentation, schriftliche Erörterung) erworben.
Students acquire advanced theoretical-methodological knowledge in the areas of artificial intelligence and machine learning, which are necessary for the implementation of intelligent, adaptive behavior and the interaction capability of technical systems. After completing the module, students are able to apply modern data- or model-based methods of AI/machine learning (e.g. deep learning, reinforcement learning, probabilistic models, XAI). In the first part of the module, theoretical-methodical knowledge on one of the topics of Advanced Artificial Intelligence is acquired and practiced in accompanying exercises. In the second module part, these methods will be deepened in a seminar. For this purpose, you will have acquired both theoretical-methodical knowledge and the competence to deal with a topic independently (research, evaluation, implementation, oral presentation, and written discussion).
Das Modul vermittelt vertiefende theoretische und methodische Kenntnisse der Künstlichen Intelligenz notwendig für die Entwicklung intelligenter interaktiver Systeme. Zu den Lehrinhalten des Moduls gehören z.B. Veranstaltungen aus den Bereichen Machine Learning, Artificial Intelligence, Deep Learning, Reinforcement Learning, XAI, Cognitive Computing, Models of Decision Making, Neural Networks, Auditory Data Science, Interactive and Autonomous Learning. Die konkreten Lehrinhalte des Moduls werden durch die vom Studierenden gewählten Veranstaltungen festgelegt. Die Wahl aus dem dafür ausgewiesenen Lehrangebot erfolgt nach persönlichem Interesse.
The module provides in-depth theoretical and methodological knowledge of artificial intelligence necessary for the development of intelligent interactive systems. The teaching content of the module includes e.g. basic courses from the areas of machine learning, artificial intelligence, deep learning, reinforcement learning, XAI, cognitive computing, models of decision-making, neural networks, auditory data science, interactive and autonomous learning. The courses chosen by the student determine the specific course content of the module. Selection from the range of courses designated for this purpose will be based on personal interest.
—
—
Die Veranstaltungen umfassen eine Vorlesung (2 LP) mit der dazugehörigen Übung (2 LP) + ein Seminar (2 LP) mit der dazugehörigen Übung (2 LP) aus einem zusammenhängenden Themenbereich.
The courses include a lecture (2 CP) with the corresponding exercise (2 CP) + a seminar (2 CP) with the corresponding exercise (2 CP) from a related subject area.
Begründung der Notwendigkeit von zwei Teilprüfungen:
Zwei Teilprüfungen sind notwendig, da in der Klausur/mündlichen Prüfung die theoretischen und mathematischen Kompetenzen und im Seminar methodische Kenntnisse sowie die Kompetenz des Präsentierens und der schriftlichen Auseinandersetzung mit einem Thema geprüft werden.
Two partial examinations are necessary since the theoretical and mathematical competencies are tested in the written/oral examination and methodological knowledge as well as the competence of presenting and written examination of a topic are tested in the seminar.
Modulstruktur: 2 bPr 1
zusammen mit einer zugehörigen Übung aus dem Bereich Advanced Artificial Intelligence zu studieren.
zusammen mit einer zugehörigen Übung aus dem Bereich Advanced Artificial Intelligence zu studieren.
Teilprüfung 1 (Seminar + Übung)
Portfolio mit Abschlussprüfung bestehend aus:
1) Portfolio von Übungen zu Inhalten des Seminars
Übungsaufgaben oder Programmieraufgaben, die veranstaltungsbezogen gestellt werden (Bestehensgrenze 50% der erzielbaren Punkte). Die Kontrolle der Übungsaufgaben umfasst auch direkte Fragen zu den Lösungsansätzen, die von den Studierenden in den Übungen beantwortet werden müssen. Der*die Lehrende kann ein individuelles Erläutern und Vorführen von Aufgaben verlangen sowie einen Teil der Übungsaufgaben durch Präsenzübungen ersetzen. Die Übungsaufgaben im Rahmen des Portfolios werden in der Regel wöchentlich ausgegeben und dienen dem begleitenden Erlernen selbständiger Umsetzungen der im Seminar/in der Vorlesung vorgestellten Lerninhalte. Eine weitergehende Konkretisierung insbesondere zum zeitlichen Umfang der Abschlussprüfung erfolgt in der Beschreibung der Veranstaltung.
2) einer Abschlussprüfung zum Seminar
Die Abschlussprüfung zu den Inhalten des Seminars nimmt Bezug auf die Übungs- oder Programmieraufgaben oder entwickelt sich aus den in den Übungen erlernten Kompetenzen.
Seminar: Referat (im Umfang von 30–40 Minuten) mit Ausarbeitung (Umfang von 10-15 Seiten)
Die Studierenden präsentieren nach Abstimmung der konkreten Aufgabenstellung mit dem Prüfenden im Rahmen des Referats die Bedeutung und systematisch-fachwissenschaftliche Einordnung einer im Seminar behandelten Problemstellung und erläutern und stellen ihr Thema in ihrer Ausarbeitung schriftlich vor, wobei Aspekte aus der Diskussion im Seminar einzubeziehen sind. Die Aufgabenstellung kann auch die Ausarbeitung einer Anwendung (d.h. Programmierung/Rechnung etc.) eines Verfahrens auf einen typischerweise praktisch bedeutsamen Einzelfall beinhalten. Das Referat mit Ausarbeitung bezieht sich auf die im Seminar vermittelten und in den Übungen erarbeiteten Inhalte.
Beide Portfolioelemente werden durch eine*n Prüfer*in geprüft. Es erfolgt eine abschließende Gesamtbewertung.
Teilprüfung 2 (Vorlesung + Übung)
Portfolio mit Abschlussprüfung bestehend aus:
1) Portfolio von Übungen zu Inhalten der Vorlesung
Übungsaufgaben oder Programmieraufgaben, die veranstaltungsbezogen gestellt werden (Bestehensgrenze 50% der erzielbaren Punkte). Die Kontrolle der Übungsaufgaben umfasst auch direkte Fragen zu den Lösungsansätzen, die von den Studierenden in den Übungen beantwortet werden müssen. Der*die Lehrende kann ein individuelles Erläutern und Vorführen von Aufgaben verlangen sowie einen Teil der Übungsaufgaben durch Präsenzübungen ersetzen. Die Übungsaufgaben im Rahmen des Portfolios werden in der Regel wöchentlich ausgegeben und dienen dem begleitenden Erlernen selbständiger Umsetzungen der im Seminar/in der Vorlesung vorgestellten Lerninhalte. Eine weitergehende Konkretisierung insbesondere zum zeitlichen Umfang der Abschlussprüfung erfolgt in der Beschreibung der Veranstaltung.
2) einer Abschlussprüfung zur Vorlesung
Die Abschlussprüfung zu den Inhalten der Vorlesung nimmt Bezug auf die Übungs- oder Programmieraufgaben oder entwickelt sich aus den in den Übungen erlernten Kompetenzen.
Vorlesung: Abschlussklausur (im Umfang von 90-120 Minuten) oder mündliche Abschlussprüfung (im Umfang von 20-30 Minuten) zu den in der Vorlesung vermittelten und in den Übungen erarbeiteten Inhalten.
Die Klausur kann alternativ als eKlausur, Open Book Klausur oder eOpen Book Klausur geprüft werden. Im Falle von Open Book Klausur und eOpen Book Klausur beträgt der Umfang 120-150 Minuten.
Beide Portfolioelemente werden durch eine*n Prüfer*in geprüft. Es erfolgt eine abschließende Gesamtbewertung.
Bei dieser Version des Moduls handelt es sich um ein auslaufendes Angebot, sie wird bis maximal Sommersemester 2025 vorgehalten. Eine aktualisierte Version dieses Moduls gilt ab dem Wintersemester 2025/26.
Bisheriger Angebotsturnus war jedes Semester.
Studiengang | Empf. Beginn 3 | Dauer | Bindung 4 |
---|---|---|---|
Intelligente Interaktive Systeme / Master of Science [FsB vom 16.05.2023 mit Änderungen vom 15.12.2023 und 01.04.2025 und Berichtigung vom 16.07.2024] | 2. o. 3. | ein oder zwei Semester | Wahlpflicht |
In diesem Modul kann eine automatische Vollständigkeitsprüfung vom System durchgeführt werden.