240009 Lineare Algebra II (V) (WiSe 2021/2022)

Contents, comment

Zunächst holen wir ein Thema nach, das im vorigen Semester aus Zeitgründen entfallen musste, nämlich das Verfahren zur Trigonalisierung. Im zweiten Teil der Veranstaltung stehen als Erstes Bilinearformen im Vordergrund, die das Skalarprodukt verallgemeinern. Damit wird ein Zugang zur Euklidischen Geometrie, zur Hamiltonschen Mechanik und zur speziellen Relativitätstheorie ermöglicht. Wir untersuchen auch die Gruppen von Transformationen, die diese Strukturen invariant lassen. Das zweite große Thema ist die Jordansche Normalform, also die einfachste Form, auf die man die Abbildungsmatrix einer linearen Selbstabbildung bringen kann. Schließlich befassen wir uns mit Multilinearformen und Tensoren und, soweit die Zeit erlaubt, mit unendlichdimensionalen Vektorräumen.

Bibliography

Siehe Teil 1 der Veranstaltung:

https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=253950195

Außerdem:

N. Bourbaki, Algebra I. : chapers 1 - 3. Hermann, Paris, 1974.
QA077 B767

Teaching staff

Dates ( Calendar view )

Frequency Weekday Time Format / Place Period  

Show passed dates >>

Subject assignments

Module Course Requirements  
24-B-LA_ver1 Lineare Algebra Lineare Algebra II Graded examination
Student information

The binding module descriptions contain further information, including specifications on the "types of assignments" students need to complete. In cases where a module description mentions more than one kind of assignment, the respective member of the teaching staff will decide which task(s) they assign the students.

Degree programme/academic programme Validity Variant Subdivision Status Semester LP  
Studieren ab 50    

No more requirements
E-Learning Space
E-Learning Space
Address:
WS2021_240009@ekvv.uni-bielefeld.de
This address can be used by teaching staff, their secretary's offices as well as the individuals in charge of course data maintenance to send emails to the course participants. IMPORTANT: All sent emails must be activated. Wait for the activation email and follow the instructions given there.
If the reference number is used for several courses in the course of the semester, use the following alternative address to reach the participants of exactly this: VST_290235696@ekvv.uni-bielefeld.de
Notes:
Additional notes on the electronic mailing lists
Email archive
Number of entries 0
Open email archive
Last update basic details/teaching staff:
Monday, June 7, 2021 
Last update times:
Thursday, March 17, 2022 
Last update rooms:
Thursday, March 17, 2022 
Type(s) / SWS (hours per week per semester)
lecture (V) / 4
Department
Faculty of Mathematics
Questions or corrections?
Questions or correction requests for this course?
Planning support
Clashing dates for this course
Links to this course
If you want to set links to this course page, please use one of the following links. Do not use the link shown in your browser!
The following link includes the course ID and is always unique:
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=290235696
Send page to mobile
Click to open QR code
Scan QR code: Enlarge QR code
ID
290235696