240036 Proseminar Angewandte Lineare Algebra (PS) (SoSe 2017)

Contents, comment

Es werden Themen behandelt, die in Vorlesungen zur Linearen Algebra oftmals
keinen Platz mehr finden, die aber für Anwendungen besonders relevant sind
und einen engen Bezug zur Analysis bzw. zur Numerischen Mathematik haben:

- Grundlagen der Spektraltheorie: Schursche und Jordansche Normalform
- Singulärwertzerlegung
- Vektornormen und induzierte Matrixnormen
- Matrixkondition
- Gaußsches Eliminationsverfahren und LR-Zerlegung
- Cholesky-Zerlegung und QR-Algorithmus
- Jacobi-Verfahren und Gauß-Seidel-Verfahren
- Krylow-Unterraum-Verfahren
- Verfahren der konjugierten Gradienten
- Arnoldi-Verfahren und GMRES-Verfahren
- Lanczos-, Bi-Lanczos- und BiCG-Verfahren
- Least-squares und QR-Zerlegung mittels Householder Algorithmus
- Potenzmethode und orthogonale Iteration
- Jacobi-Verfahren für Eigenwerte
- Givens Householder Verfahren

Requirements for participation, required level

Lineare Algebra 1 + 2

Bibliography

[1]: G. Allaire and S. M. Kaber. Numerical linear algebra, volume 55 of Texts in Applied Mathematics. Springer, New York, 2008. Translated from the 2002 French original by Karim Trabelsi.
[2]: G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, fourth edition, 2013.
[3]: R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University Press, Cambridge, second edition, 2013.
[4]: A. Meister. Numerik linearer Gleichungssysteme. Friedr. Vieweg & Sohn, Braunschweig, 1999. Eine Einführung in moderne Verfahren. [An introduction to modern procedures].

External comments page

https://www.math.uni-bielefeld.de/~dotten/AngewandteLineareAlgebra_SoSe17_de.shtml

Teaching staff

Dates ( Calendar view )

Frequency Weekday Time Format / Place Period  

Show passed dates >>

Subject assignments

Module Course Requirements  
24-B-GEO_ver1 Geometrie (Gym/Ge) Proseminar Study requirement
Ungraded examination
Student information
24-B-PX Praxismodul Proseminar Study requirement
Ungraded examination
Student information
24-E Ergänzungsmodul Mathematik Proseminar Study requirement
Ungraded examination
Student information

The binding module descriptions contain further information, including specifications on the "types of assignments" students need to complete. In cases where a module description mentions more than one kind of assignment, the respective member of the teaching staff will decide which task(s) they assign the students.

Degree programme/academic programme Validity Variant Subdivision Status Semester LP  
Mathematik (Gym/Ge als zweites U-Fach) / Master of Education (Enrollment until SoSe 2014) M.M.05 Wahlpflicht 3. 3 unbenotet  

No more requirements
No eLearning offering available
Registered number: 13
This is the number of students having stored the course in their timetable. In brackets, you see the number of users registered via guest accounts.
Limitation of the number of participants:
Limited number of participants: 15
Address:
SS2017_240036@ekvv.uni-bielefeld.de
This address can be used by teaching staff, their secretary's offices as well as the individuals in charge of course data maintenance to send emails to the course participants. IMPORTANT: All sent emails must be activated. Wait for the activation email and follow the instructions given there.
If the reference number is used for several courses in the course of the semester, use the following alternative address to reach the participants of exactly this: VST_91762301@ekvv.uni-bielefeld.de
Coverage:
4 Students to be reached directly via email
Notes:
Additional notes on the electronic mailing lists
Email archive
Number of entries 0
Open email archive
Last update basic details/teaching staff:
Friday, January 20, 2017 
Last update times:
Thursday, March 2, 2017 
Last update rooms:
Thursday, March 2, 2017 
Type(s) / SWS (hours per week per semester)
proseminar (PS) / 2
Department
Faculty of Mathematics
Questions or corrections?
Questions or correction requests for this course?
Planning support
Clashing dates for this course
Links to this course
If you want to set links to this course page, please use one of the following links. Do not use the link shown in your browser!
The following link includes the course ID and is always unique:
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=91762301
Send page to mobile
Click to open QR code
Scan QR code: Enlarge QR code
ID
91762301