Start my eKVV Studieninformation Lernräume Prüfungsverwaltung Anmelden

392101 Cognitive Computing: Reasoning and decision making with graphical probabilistic models (V) (SoSe 2016)

Einrichtung
Technische Fakultät
Art(en) / SWS
V / 2
Zeitraum
11.04.2016-22.07.2016
Voraussichtl. Wiederholung
Sprache
Diese Veranstaltung wird komplett in englischer Sprache gehalten

Lehrende

Klicken Sie auf den Namen um Kontaktdaten wie die E-Mailadresse zu sehen

Termine (Kalendersicht )

Rhythmus Tag Uhrzeit Ort Zeitraum  

zeige vergangene Termine >>

Klausuren

  • keine gefunden

Fachzuordnungen

Modul (Studienmodell 2011) Veranstaltung Leistungen  
39-Inf-EGMI Ergänzungmodul Informatik vertiefende Informatikvorlesung 2.1 unbenotete Prüfungsleistung
Studieninformation
39-Inf-KR Cognitive Computing / Kognitives Rechnen Kognitives Rechnen Studieninformation
39-M-Inf-MIKE Modularisierter individueller Kompetenz-Erwerb (MiKE) veranstaltungsübergreifend unbenotete Prüfungsleistung Studieninformation
39-M-Inf-VKI Vertiefung Künstliche Intelligenz Spezielle Themen der Künstlichen Intelligenz benotete Prüfungsleistung
Studieninformation

Die Angaben in der Tabelle ergeben sich aus der Zuordnung zu einem Modul und der entsprechenden Modulbeschreibung. Bei den angegebenen "Leistungen" können Wahloptionen der Studierenden bestehen; Auskunft hierüber gibt ebenfalls die Modulbeschreibung.

Studiengang/-angebot Gültigkeit Variante Untergliederung Status Sem. LP  
Studieren ab 50    

Allgemeine Anforderungen bei Lehrveranstaltungen:

Die Anforderungen an die aktive Teilnahme (nur gültig für Studienmodell 2002) sind hier erläutert. In den FsB und Modulhandbüchern finden sich Informationen, ob Studienleistungen (nur gültig für Studienmodell 2011)/Einzelleistungen/Modul(teil)prüfungen vorgesehen sind, und welche Anforderungen hierfür bestehen.

Öffnung

Geöffnet für Hörer/-innen anderer/aller Fakultäten 

Inhalt, Kommentar

Eine wesentliche Anforderung an künstliche Systeme ist es, mit Unsicherheiten umgehen zu können. Ganz besonders zentral ist diese Fähigkeit in intelligenten und autonomen Systemen, in denen Unsicherheiten z.B. bzgl. der Wahrnehmung (was habe ich gesehen? was nicht?), des Wissens (wie vollständig und aktuell ist mein Wissen?), des Schließens (wie sicher kann ich mir sein? wie gut ist meine Entscheidung?) oder der Aktionen (hat das geklappt?) entstehen. In dieser Vorlesung werden moderne Techniken des Schließens und Entscheidens unter unvollständigem und unsicherem Wissen vermittelt (graphische probabilistische Modell, Bayes-Netze, Markov-Entscheidungsprobleme), mit denen in der Künstlichen Intelligenz und Robotik heutzutage intelligente autonome Agenten konstruiert werden. Neben den mathematischen Grundlagen werden auch die Algorithmen erarbeiten. Die Vorlesung wird von praktischen Programmierübungen in Form kleiner Projekte in Python begleitet.

Grober Aufbau der Vorlesung:
1. Einführung und mathematische Grundlagen (Wahrscheinlichkeits-, Graphentheorie)
2. Probablilistische graphische Modelle
3. Exakte und approximative Inferenzverfahren
4. Entscheidungsbäume und -netze, Markov-Entscheidungsprozesse
5. Modell-Lernen

Literaturangaben

Darwiche (2000). Modeling and Reasoning with Bayesian Networks. Cambridge Univ. Press.
Koller & Friedman, Probabilistic Graphical Models, MIT Press
Barber, Bayesian Reasoning and Machine Learning, Cambridge Univ. Press
J. Pearl (2009) Causality: Models, Reasoning and Inference. 2nd edition, Cambridge Univ. Press.
Russel & Norvig (2002). Artificial Intelligence: A modern approach. 2nd edition, Prentice Hall.

Lernraum (E-Learning)

Zu dieser Veranstaltung existiert ein Lernraum im E-Learning System. Lehrende können dort Materialien zu dieser Lehrveranstaltung bereitstellen:

TeilnehmerInnen
registrierte Anzahl : 19
Dies ist die Anzahl der Studierenden, die die Veranstaltung im Stundenplan gespeichert haben. In Klammern die Anzahl der über Gastaccounts angemeldeten Benutzer/innen.
Abruf der Liste der Teilnehmer/innen :
Lehrende und ihre Sekretariate können sich die Liste der im eKVV registrierten Teilnehmer/innen über die passwortgeschützen eKVV Seiten abrufen: Meine Veranstaltungen
Falls Sie noch keinen BIS Zugang besitzen oder generelle Hinweise zum Abrufen und zum Umgang mit den Teilnehmerlisten suchen nutzen Sie unsere Hilfeseite
Dort finden Sie auch Informationen dazu, wie Sie aus einer Teilnehmerliste die Ergebnisliste für die Prüfungsdokumentation erstellen und wie Sie diese an die Prüfungsämter übermitteln können.
Automatischer E-Mailverteiler der Veranstaltung
Adresse :
SS2016_392101@ekvv.uni-bielefeld.de
Lehrende, ihre Sekretariate sowie für die Pflege der Veranstaltungsdaten zuständige Personen können über diese Adresse E-Mails an die VeranstaltungsteilnehmerInnen verschicken. WICHTIG: Sie müssen verschickte E-Mails jeweils freischalten. Warten Sie die Freischaltungs-E-Mail ab und folgen Sie den darin enthaltenen Hinweisen.
Falls die Belegnummer mehrfach im Semester verwendet wird können Sie die folgende alternative Verteileradresse nutzen, um die TeilnehmerInnen genau dieser Veranstaltung zu erreichen: VST_70723381@ekvv.uni-bielefeld.de
Reichweite :
17 Studierende direkt per E-Mail erreichbar
Hinweise :
Weitere Hinweise zu den E-Mailverteilern
Änderungen/Aktualität der Veranstaltungsdaten
Letzte Änderung Grunddaten/Lehrende :
Dienstag, 16. Februar 2016 
Letzte Änderung Zeiten :
Mittwoch, 9. März 2016 
Letzte Änderung Räume :
Mittwoch, 9. März 2016 
Sonstiges
Link auf diese Veranstaltung
Wenn Sie diese Veranstaltungsseite verlinken wollen, so können Sie einen der folgenden Links verwenden. Verwenden Sie nicht den Link, der Ihnen in Ihrem Webbrowser angezeigt wird!
Der folgende Link verwendet die Veranstaltungs-ID und ist immer eindeutig:
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=70723381
Interwiki Link
Kopieren Sie diesen Link, um im BISWiki auf diese Veranstaltung zu verweisen.
[[ Veranstaltung: 70723381 | SS2016_392101 ]]
Planungshilfen
Terminüberschneidungen für diese Veranstaltung
ID
70723381
Seite zum Handy schicken
Klicken Sie hier, um den QR Code zu zeigen
Scannen Sie den QR-Code: QR-Code vergrößern