310405 Multivariate Verfahren (V) (WiSe 2025/2026)

Contents, comment

This course gives a relatively broad overview of various techniques for analysing complex multivariate data. It can basically be considered an intro to machine learning from a statistical perspective. We'll focus on understanding when and why to use different methods, with examples from various domains showing how these techniques answer real-world questions.

Course content:

  • Intro and exploratory data analysis
  • Regression (focus on shrinkage methods)
  • Cluster analysis
  • Classification
  • Dimensionality reduction

Teaching staff

Dates ( Calendar view )

Frequency Weekday Time Format / Place Period  
weekly Mo 12-14 U2-205 13.10.2025-06.02.2026

Subject assignments

Module Course Requirements  
25-FS-EM Einführungsmodul E2: Einführende Veranstaltung aus den Fakultäten Student information
E3: Einführende Veranstaltung aus den Fakultäten Student information
25-FS-GM Grundlagenmodul E2: Einführende Veranstaltung aus den Fakultäten Student information
E3: Einführende Veranstaltung aus den Fakultäten Student information
31-M-El1 Elective Courses 1 Gewählte Veranstaltungen aus dem Bereich "Spezialkenntnisse in ökonomischer Theorie und/oder quantitativen Methoden" 4 LP Student information
31-M-El2 Elective Courses 2 Gewählte Veranstaltung aus dem Bereich quantitativen Methoden 4 LP Student information
Gewählte Veranstaltungen aus dem Bereich quantitativen Methoden 4 LP Student information
31-M-ISDA Introduction to Statistical Data Analysis Multivariate Methods Student information
31-M23 Profilmodul Statistische Methoden Multivariate Verfahren Student information
31-SW-StaM Statistische Methoden Multivariate Verfahren Student information

The binding module descriptions contain further information, including specifications on the "types of assignments" students need to complete. In cases where a module description mentions more than one kind of assignment, the respective member of the teaching staff will decide which task(s) they assign the students.

Degree programme/academic programme Validity Variant Subdivision Status Semester LP  
Psychologie - Strukturiertes Promotionsprogramm / Promotion Veranstalt.Forsch&Auswert-Meth   2 aktive Teilnahme  
Studieren ab 50    

No more requirements
Moodle Courses
Moodle Courses
Address:
WS2025_310405@ekvv.uni-bielefeld.de
This address can be used by teaching staff, their secretary's offices as well as the individuals in charge of course data maintenance to send emails to the course participants. IMPORTANT: All sent emails must be activated. Wait for the activation email and follow the instructions given there.
If the reference number is used for several courses in the course of the semester, use the following alternative address to reach the participants of exactly this: VST_565236174@ekvv.uni-bielefeld.de
Notes:
Additional notes on the electronic mailing lists
Last update basic details/teaching staff:
Thursday, June 5, 2025 
Last update times:
Thursday, August 14, 2025 
Last update rooms:
Thursday, August 14, 2025 
Type(s) / SWS (hours per week per semester)
lecture (V) / 2
Language
This lecture is taught in english
Department
Faculty of Business Administration and Economics
Questions or corrections?
Questions or correction requests for this course?
Planning support
Clashing dates for this course
Links to this course
If you want to set links to this course page, please use one of the following links. Do not use the link shown in your browser!
The following link includes the course ID and is always unique:
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=565236174
Send page to mobile
Click to open QR code
Scan QR code: Enlarge QR code
ID
565236174