The course covers foundational methods of data mining, explorative data analysis, and visualization. The focus is on educational data (so-called 'educational data mining' or 'learning analytics'). Example methods are:
The core skills taught are:
Useful prior knowledge: Neural Networks, Linear Algebra, Probability Theory
Relations to: Information Visualization, Introduction to Machine Learning, Pattern Recognition, Unsupervised Machine Learning, Generative AI
| Rhythmus | Tag | Uhrzeit | Format / Ort | Zeitraum | |
|---|---|---|---|---|---|
| wöchentlich | Mo | 12-14 | V2-105/115 | 13.10.2025-06.02.2026
nicht am: 22.12.25 / 29.12.25 |
Die verbindlichen Modulbeschreibungen enthalten weitere Informationen, auch zu den "Leistungen" und ihren Anforderungen. Sind mehrere "Leistungsformen" möglich, entscheiden die jeweiligen Lehrenden darüber.
Students need to achieve 50% points in the exercises, need to present their exercises at least two times in the tutorial, and need to pass a final, written exam