240157 Algebraische Zahlentheorie III (V) (WiSe 2014/2015)

Short comment

Veranstaltungsbeginn am 13.10.2014 wie oben angeführt

Contents, comment

Dies ist eine Einführung in die Iwasawa-Theorie. Diese studiert arithmetische Invarianten wie die Klassengruppe eines Zahlkörpers in unendlichen Körpertürmen. Insbesondere Galoiserweiterungen, deren Galoisgruppe isomorph zu den p-adischen ganzen Zahlen ist, werden betrachtet.

Diese Theorie wurde um 1960 von dem japanischen Mathematiker Kenkichi Iwasawa ins Leben gerufen und hat vor Kurzem mit dem Beweis der Iwasawa-Hauptvermutung für total reelle Zahlkörper einen neuen Höhepunkt erreicht.

Requirements for participation, required level

Algebraische Zahlentheorie I und II, d.h. gute Grundkenntnisse in algebraischer Zahlentheorie und Klassenkörpertheorie.

Bibliography

Jürgen Neukirch, Alexander Schmidt, Kay Wingberg: Cohomology of Number Fields, Grundlehren der Mathematischen Wissenschaften 323, Springer-Verlag (2008)

Lawrence Washington: Introduction to cyclotomic fields, Graduate Texts in Mathematics 83, Springer-Verlag (1997)

Serge Lang: Cyclotomic fields I and II, Graduate Texts in Mathematics 121, Springer-Verlag (1990)

John Coates, Ramdorai Sujatha: Cyclotomic Fields and Zeta Values, Springer Monographs in Mathematics, Springer-Verlag (2006)

Teaching staff

Dates ( Calendar view )

Frequency Weekday Time Format / Place Period  
weekly Mo 16-18 V4-122 13.10.2014-06.02.2015
weekly Mi 10:00-12:00 R2-155 13.-29.10.2014
weekly Mi 10-12 X-E0-201 05.11.2014-06.02.2015
not on: 12/24/14 / 12/31/14

Hide passed dates <<

Subject assignments

Module Course Requirements  
24-M-P1 Profilierung 1 Profilierungsvorlesung (mit Übung) - Typ 1 Student information
24-M-P2 Profilierung 2 Profilierungsvorlesung (mit Übungen) - Typ 1 Student information
24-M-PWM Profilierung Wirtschaftsmathematik Profilierungsvorlesung (mit Übung) - Typ 1 Student information
- Graded examination Student information
24-M-S2-AL Spezialisierung 2 - Algebra Masterkurs 2 Algebra - Variante 1 Student information
- Graded examination Student information
24-M-V2-AL Vertiefung 2 - Algebra Masterkurs 1 Algebra - Variante 1 Student information
- Graded examination Student information

The binding module descriptions contain further information, including specifications on the "types of assignments" students need to complete. In cases where a module description mentions more than one kind of assignment, the respective member of the teaching staff will decide which task(s) they assign the students.

Degree programme/academic programme Validity Variant Subdivision Status Semester LP  
Mathematik / Diplom (Enrollment until SoSe 2008) Wahl 5. 6. 7. 8. scheinfähig HS

No more requirements
No eLearning offering available
Registered number: 7
This is the number of students having stored the course in their timetable. In brackets, you see the number of users registered via guest accounts.
Address:
WS2014_240157@ekvv.uni-bielefeld.de
This address can be used by teaching staff, their secretary's offices as well as the individuals in charge of course data maintenance to send emails to the course participants. IMPORTANT: All sent emails must be activated. Wait for the activation email and follow the instructions given there.
If the reference number is used for several courses in the course of the semester, use the following alternative address to reach the participants of exactly this: VST_48974930@ekvv.uni-bielefeld.de
Coverage:
No students to be reached via email
Notes:
Additional notes on the electronic mailing lists
Last update basic details/teaching staff:
Friday, December 11, 2015 
Last update times:
Thursday, October 22, 2015 
Last update rooms:
Friday, October 10, 2014 
Type(s) / SWS (hours per week per semester)
lecture (V) / 4
Department
Faculty of Mathematics
Questions or corrections?
Questions or correction requests for this course?
Planning support
Clashing dates for this course
Links to this course
If you want to set links to this course page, please use one of the following links. Do not use the link shown in your browser!
The following link includes the course ID and is always unique:
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=48974930
Send page to mobile
Click to open QR code
Scan QR code: Enlarge QR code
ID
48974930