300265 Multiple Imputation (S) (WiSe 2022/2023)

Contents, comment

Das Seminar behandelt statistische Verfahren zur Behandlung fehlender Werte in Datensätzen, die
hierarchisch aufgebaut sein können und/oder mehrere Meßzeitpunkte enthalten (z.B. Paneldaten). Aktuelle
Verfahren zur Behandlung fehlender Werte können entweder modellbasiert oder datenbasiert sein (vgl. den
Überblick in Reinecke 2014: 240). Zu letzterem zählen die multiplen Imputationsverfahren.
Anhand von Übungen können verschiedene Imputationsverfahren mit ausgewählten Datensätzen verwendet
werden. Die Beispiele orientieren sich an dem Buch von Kleinke, Reinecke, Salfran und Spiess (2020),
insbesondere Chapter 5 und 6), und an verschiedenen Analysen, die mit den Daten des Projektes "Kriminalität
in der modernen Stadt" (CrimoC, www.crimoc.org) durchgeführt wurden (Kleinke et al. 2021).
Da mit R-Paketen gearbeitet wird, sollten die Seminarteilnehmerinnen und Seminarteilnehmer Grundkenntnisse
in der Handhabung von Datensätzen in R haben und mit multivariaten Verfahren der statistischen Datenanalyse
(z.B. multiple Regressionsanalyse, allgemeines lineares Modell) vertraut sein.

Bibliography

Alexandrowicz, R. (2013). R in 10 Schritten. Stuttgart: UTB.

Enders C.K. (2022). Applied Missing Data Analysis. 2nd. ed. New York: Guilford.

Kleinke, K.; Reinecke, J.; Salfrán, D. & Spiess, M. (2020). Applied Multiple Imputation. Advantages, Pitfalls,
New Developments and Applications in R. Heidelberg: Springer.

Kleinke, K.; Reinecke, J. & Weins, C. (2021). The development of delinquency during adolescence: a comparison of
missing data techniques revisited. In: Quality & Quantity, Vol. 55, 877–895.

Reinecke, J. (2014). Strukturgleichungsmodelle in den Sozialwissenschaften. 2. Aufl. München: Oldenbourg.

Teaching staff

Dates ( Calendar view )

Frequency Weekday Time Format / Place Period  
weekly Di 14-16 X-C3-107 18.10.2022-31.01.2023 X-D2-103 (Computerraum)

Hide passed dates <<

Subject assignments

Module Course Requirements  
30-M-Soz-M3a Soziologische Methoden a Seminar 1 Study requirement
Student information
Seminar 2 Study requirement
Student information
- Graded examination Student information
30-M-Soz-M3b Soziologische Methoden b Seminar 1 Study requirement
Student information
Seminar 2 Study requirement
Student information
- Graded examination Student information
30-M-Soz-M3c Soziologische Methoden c Seminar 1 Study requirement
Student information
Seminar 2 Study requirement
Student information
- Graded examination Student information
30-SW-ESo Empirische Sozialforschung Seminar 1 Study requirement
Student information
Seminar 2 Study requirement
Student information
- Graded examination Student information

The binding module descriptions contain further information, including specifications on the "types of assignments" students need to complete. In cases where a module description mentions more than one kind of assignment, the respective member of the teaching staff will decide which task(s) they assign the students.


No more requirements
E-Learning Space
E-Learning Space
Address:
WS2022_300265@ekvv.uni-bielefeld.de
This address can be used by teaching staff, their secretary's offices as well as the individuals in charge of course data maintenance to send emails to the course participants. IMPORTANT: All sent emails must be activated. Wait for the activation email and follow the instructions given there.
If the reference number is used for several courses in the course of the semester, use the following alternative address to reach the participants of exactly this: VST_352829098@ekvv.uni-bielefeld.de
Notes:
Additional notes on the electronic mailing lists
Email archive
Number of entries 0
Open email archive
Last update basic details/teaching staff:
Tuesday, June 14, 2022 
Last update times:
Thursday, September 8, 2022 
Last update rooms:
Thursday, September 8, 2022 
Type(s) / SWS (hours per week per semester)
seminar (S) / 2
Department
Faculty of Sociology
Questions or corrections?
Questions or correction requests for this course?
Planning support
Clashing dates for this course
Links to this course
If you want to set links to this course page, please use one of the following links. Do not use the link shown in your browser!
The following link includes the course ID and is always unique:
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=352829098
Send page to mobile
Click to open QR code
Scan QR code: Enlarge QR code
ID
352829098