392251 ISY Project: Learning in memristive systems (Pj) (SoSe 2019)

Contents, comment

In recent years various learning algorithms for spike-based neural networks have been proposed including Hebbian learning and spike-timing dependent plasticity (STDP). At the same time the behavior of state-changing memristive devices shows promissing results for their integration in neural networks.
In this project we seek to advance the implementation of stochastic memristive devices as synaptic building blocks and their ability to reproduce learning models. Based on models obtained from physical devices you will simulate neural networks consisting of memristive devices and integrate-and-fire neurons. Different network topologies and learning performances will be evaluated on common machine learning tasks.
Please note that the teams will be selected by the supervisors on the basis of short applications that students are expected to send to them. Registering to the project in the ekVV will only be regarded as expression of interest; it will not secure a team membership. Please get in touch with the supervisors for information on the application procedure.

Requirements for participation, required level

- Required skills (e.g. mandatory courses, if required)
* good programming skills in Python
* basic knowledge of spiking neural networks

Teaching staff

Dates ( Calendar view )

Frequency Weekday Time Format / Place Period  

Show passed dates >>

Subject assignments

Module Course Requirements  
39-M-Inf-GP Grundlagenprojekt Intelligente Systeme Gruppenprojekt Ungraded examination
Student information

The binding module descriptions contain further information, including specifications on the "types of assignments" students need to complete. In cases where a module description mentions more than one kind of assignment, the respective member of the teaching staff will decide which task(s) they assign the students.


No more requirements
No eLearning offering available
Address:
SS2019_392251@ekvv.uni-bielefeld.de
This address can be used by teaching staff, their secretary's offices as well as the individuals in charge of course data maintenance to send emails to the course participants. IMPORTANT: All sent emails must be activated. Wait for the activation email and follow the instructions given there.
If the reference number is used for several courses in the course of the semester, use the following alternative address to reach the participants of exactly this: VST_162899668@ekvv.uni-bielefeld.de
Notes:
Additional notes on the electronic mailing lists
Last update basic details/teaching staff:
Wednesday, February 6, 2019 
Last update times:
Monday, February 4, 2019 
Last update rooms:
Monday, February 4, 2019 
Type(s) / SWS (hours per week per semester)
project (Pj) / 4
Department
Faculty of Technology
Questions or corrections?
Questions or correction requests for this course?
Planning support
Clashing dates for this course
Links to this course
If you want to set links to this course page, please use one of the following links. Do not use the link shown in your browser!
The following link includes the course ID and is always unique:
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=162899668
Send page to mobile
Click to open QR code
Scan QR code: Enlarge QR code
ID
162899668