Start my eKVV Studieninformation Lernräume Prüfungsverwaltung Anmelden

392245 Deep Learning (S) (SoSe 2018)

Inhalt, Kommentar

Within the seminar, an overview about important facets of practically relevant Deep Neural Networks (DNNs) will be given in the form of recent original publications from the literature. Topics which will be covered include the following:
- efficient training of DNNs
- automatic hyperparameter optimization
- adversarial examples for DNNs
- generative adversarial networks and their efficient training
- deep reinforcement learning
- deep recurrent and recursive networks
- neural Turing machines
- applications for language translation
- applications for tracking in vision
- applications for privacy preserving data storage

Teilnahmevoraussetzungen, notwendige Vorkenntnisse

Knowledge of basic math and computer science is required. Some knowledge about machine learning might be benefitial for some of the topics.

Literaturangaben

The articles covered in the seminar are available in the Lernraum / Dokumentenablage.
Further reading is available on the internet such as:
- the book: http://www.deeplearningbook.org/
- another very gentle introductory book: http://neuralnetworksanddeeplearning.com/
- collection of material: http://deeplearning.net/
- link to Andrew Ngs courses: https://www.deeplearning.ai/
- short introduction: https://machinelearningmastery.com/what-is-deep-learning/
- ....
Typically, one of the standard frameworks are used in practical applications, such as tensoflow, theano, pytorch, keras (on top of theano/tensorflow) (all in python), caffe (C++), deeplearning4you (java). Python seems the dominant language, currently. These frameworks come with an embedded technology to train the networks on suitable GPU.

Lehrende

Termine (Kalendersicht )

Rhythmus Tag Uhrzeit Ort Zeitraum  

Zeige vergangene Termine >>

Klausuren

  • Keine gefunden

Fachzuordnungen

Modul Veranstaltung Leistungen  
39-Inf-EGMI Ergänzungsmodul Informatik vertiefendes Seminar 1 unbenotete Prüfungsleistung
Studieninformation
vertiefendes Seminar 2 unbenotete Prüfungsleistung
Studieninformation
vertiefendes Seminar 3 unbenotete Prüfungsleistung
Studieninformation
vertiefendes Seminar 4 unbenotete Prüfungsleistung
Studieninformation

Die verbindlichen Modulbeschreibungen enthalten weitere Informationen, auch zu den "Leistungen" und ihren Anforderungen. Sind mehrere "Leistungsformen" möglich, entscheiden die jeweiligen Lehrenden darüber.

Konkretisierung der Anforderungen

Students should present one of the topis of the seminar and they should actively take part in the discussions accompanying the other presetations. It is possible to extend the work towards a small project which can be counted e.g. as individual MSc project (5 CP).

Lernraum
TeilnehmerInnen
Automatischer E-Mailverteiler der Veranstaltung
Änderungen/Aktualität der Veranstaltungsdaten
Sonstiges