Start my eKVV Studieninformation Lernräume Prüfungsverwaltung Anmelden

392245 Deep Learning (S) (SoSe 2018)

Einrichtung
Technische Fakultät
Art(en) / SWS
S / 2
Zeitraum
09.04.2018-20.07.2018
Voraussichtl. Wiederholung

Lehrende

Klicken Sie auf den Namen um Kontaktdaten wie die E-Mailadresse zu sehen

Termine (Kalendersicht )

Rhythmus Tag Uhrzeit Ort Zeitraum  
wöchentlich Di 16-18 C01-148 09.04.2018-20.07.2018
nicht am: 17.04.18 / 24.04.18 / 01.05.18 / 08.05.18

Klausuren

  • Keine gefunden

Fachzuordnungen

Modul Veranstaltung Leistungen  
39-Inf-EGMI Ergänzungmodul Informatik vertiefendes Seminar 1 unbenotete Prüfungsleistung
Studieninformation
vertiefendes Seminar 2 unbenotete Prüfungsleistung
Studieninformation
vertiefendes Seminar 3 unbenotete Prüfungsleistung
Studieninformation
vertiefendes Seminar 4 unbenotete Prüfungsleistung
Studieninformation

Die verbindlichen Modulbeschreibungen enthalten weitere Informationen, auch zu den "Leistungen" und ihren Anforderungen. Sind mehrere "Leistungsformen" möglich, entscheiden die jeweiligen Lehrenden darüber.

Allgemeine Anforderungen bei Lehrveranstaltungen:

Die Anforderungen an die aktive Teilnahme (nur gültig für Studienmodell 2002) sind hier erläutert. In den FsB und Modulhandbüchern finden sich Informationen, ob Studienleistungen (nur gültig für Studienmodell 2011)/Einzelleistungen/Modul(teil)prüfungen vorgesehen sind, und welche Anforderungen hierfür bestehen.

Konkretisierung der Anforderungen

Students should present one of the topis of the seminar and they should actively take part in the discussions accompanying the other presetations. It is possible to extend the work towards a small project which can be counted e.g. as individual MSc project (5 CP).

Inhalt, Kommentar

Within the seminar, an overview about important facets of practically relevant Deep Neural Networks (DNNs) will be given in the form of recent original publications from the literature. Topics which will be covered include the following:
- efficient training of DNNs
- automatic hyperparameter optimization
- adversarial examples for DNNs
- generative adversarial networks and their efficient training
- deep reinforcement learning
- deep recurrent and recursive networks
- neural Turing machines
- applications for language translation
- applications for tracking in vision
- applications for privacy preserving data storage

Teilnahmevoraussetzungen, notwendige Vorkenntnisse

Knowledge of basic math and computer science is required. Some knowledge about machine learning might be benefitial for some of the topics.

Literaturangaben

The articles covered in the seminar are available in the Lernraum / Dokumentenablage.
Further reading is available on the internet such as:
- the book: http://www.deeplearningbook.org/
- another very gentle introductory book: http://neuralnetworksanddeeplearning.com/
- collection of material: http://deeplearning.net/
- link to Andrew Ngs courses: https://www.deeplearning.ai/
- short introduction: https://machinelearningmastery.com/what-is-deep-learning/
- ....
Typically, one of the standard frameworks are used in practical applications, such as tensoflow, theano, pytorch, keras (on top of theano/tensorflow) (all in python), caffe (C++), deeplearning4you (java). Python seems the dominant language, currently. These frameworks come with an embedded technology to train the networks on suitable GPU.

Lernraum (E-Learning)

Zu dieser Veranstaltung existiert ein Lernraum im E-Learning System. Lehrende können dort Materialien zu dieser Lehrveranstaltung bereitstellen:

TeilnehmerInnen
registrierte Anzahl : 21
Dies ist die Anzahl der Studierenden, die die Veranstaltung im Stundenplan gespeichert haben. In Klammern die Anzahl der über Gastaccounts angemeldeten Benutzer/innen.
Abruf der Liste der Teilnehmer/innen :
Lehrende und ihre Sekretariate können sich die Liste der im eKVV registrierten Teilnehmer/innen über die passwortgeschützen eKVV Seiten abrufen: Meine Veranstaltungen
Falls Sie noch keinen BIS Zugang besitzen oder generelle Hinweise zum Abrufen und zum Umgang mit den Teilnehmerlisten suchen nutzen Sie unsere Hilfeseite
Dort finden Sie auch Informationen dazu, wie Sie aus einer Teilnehmerliste die Ergebnisliste für die Prüfungsdokumentation erstellen und wie Sie diese an die Prüfungsämter übermitteln können.
Automatischer E-Mailverteiler der Veranstaltung
Adresse :
SS2018_392245@ekvv.uni-bielefeld.de
Lehrende, ihre Sekretariate sowie für die Pflege der Veranstaltungsdaten zuständige Personen können über diese Adresse E-Mails an die VeranstaltungsteilnehmerInnen verschicken. WICHTIG: Sie müssen verschickte E-Mails jeweils freischalten. Warten Sie die Freischaltungs-E-Mail ab und folgen Sie den darin enthaltenen Hinweisen.
Falls die Belegnummer mehrfach im Semester verwendet wird können Sie die folgende alternative Verteileradresse nutzen, um die TeilnehmerInnen genau dieser Veranstaltung zu erreichen: VST_121199976@ekvv.uni-bielefeld.de
Reichweite :
21 Studierende direkt per E-Mail erreichbar
Hinweise :
Weitere Hinweise zu den E-Mailverteilern
E-Mailarchiv
Anzahl der Archiveinträge: 5
E-Mailarchiv öffnen
Änderungen/Aktualität der Veranstaltungsdaten
Letzte Änderung Grunddaten/Lehrende :
Montag, 15. Januar 2018 
Letzte Änderung Zeiten :
Dienstag, 6. Februar 2018 
Letzte Änderung Räume :
Dienstag, 6. Februar 2018 
Sonstiges
Link auf diese Veranstaltung
Wenn Sie diese Veranstaltungsseite verlinken wollen, so können Sie einen der folgenden Links verwenden. Verwenden Sie nicht den Link, der Ihnen in Ihrem Webbrowser angezeigt wird!
Der folgende Link verwendet die Veranstaltungs-ID und ist immer eindeutig:
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=121199976
Interwiki Link
Kopieren Sie diesen Link, um im BISWiki auf diese Veranstaltung zu verweisen.
[[ Veranstaltung: 121199976 | SS2018_392245 ]]
Planungshilfen
Terminüberschneidungen für diese Veranstaltung
ID
121199976
Seite zum Handy schicken
Klicken Sie hier, um den QR Code zu zeigen
Scannen Sie den QR-Code: QR-Code vergrößern