392254 Project: 3D Gaussian Splatting for Simulations and Data Augmentation (Pj) (WiSe 2024/2025)

Contents, comment

Während aktuelle Radiance-Field-Methoden wie NeRF und NGP oft langsame Trainingszeiten und hohe Rechenkosten mit sich bringen, ermöglicht 3D Gaussian Splatting eine schnellere und effizientere Verarbeitung, ohne dabei an visueller Qualität einzubüßen, insbesondere durch die detailgetreue Darstellung feiner Strukturen bei höherer Bildfrequenz und vergleichbarer Qualität. Diese Technologie ist besonders vielversprechend für Anwendungen in der Robotik und visuellen Simulationen, da sie sich dank geringer Trainingszeit und ihrer Echtzeitfähigkeit hervorragend zur Datenaugmentation, Validierung und Forschung des Sim2Real-Gaps eignet.
Hauptziel des Projektes ist es, das Paper Kerbl et al. (2023) (https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/3d_gaussian_splatting_low.pdf) auf einem Linux-System aufzusetzen und erfolgreich zu reproduzieren. Der Algorithmus kann dann in einem weiterführenden Schritt in robotischen Manipulationssimulationen angewendet werden.

While current radiance field methods such as NeRF and NGP often entail slow training times and high computational costs, 3D Gaussian splatting enables faster and more efficient processing without sacrificing visual quality, especially through the detailed representation of fine structures at higher frame rates and comparable quality. This technology is particularly promising for applications in robotics and visual simulations, as it is ideally suited for data augmentation, validation and research of the Sim2Real gap thanks to its short training time and real-time capability.
The main aim of the project is to set up and successfully reproduce the Kerbl et al. (2023) paper (https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/3d_gaussian_splatting_low.pdf) on a Linux system. The algorithm can then be applied in a further step in robotic manipulation simulations.

External comments page

https://www.uni-bielefeld.de/fakultaeten/technische-fakultaet/arbeitsgruppen/kollaborative-robotik/lehre/projekte/MA_Ausschreibung_Gaussian.pdf

Teaching staff

Dates ( Calendar view )

Frequency Weekday Time Format / Place Period  

Show passed dates >>

Subject assignments

Module Course Requirements  
39-M-Inf-P1_NWI Projekt 1 Projekt 1 Ungraded examination
Student information
39-M-Inf-P_ver1 Projekt Projekt Ungraded examination
Student information
FH-BMPro-2043 Projekt Biomechatronik Projekt BioMechatronik Graded examination
Student information

The binding module descriptions contain further information, including specifications on the "types of assignments" students need to complete. In cases where a module description mentions more than one kind of assignment, the respective member of the teaching staff will decide which task(s) they assign the students.


No more requirements
No eLearning offering available
Registered number: 0
This is the number of students having stored the course in their timetable. In brackets, you see the number of users registered via guest accounts.
Address:
WS2024_392254@ekvv.uni-bielefeld.de
This address can be used by teaching staff, their secretary's offices as well as the individuals in charge of course data maintenance to send emails to the course participants. IMPORTANT: All sent emails must be activated. Wait for the activation email and follow the instructions given there.
If the reference number is used for several courses in the course of the semester, use the following alternative address to reach the participants of exactly this: VST_494410280@ekvv.uni-bielefeld.de
Coverage:
No students to be reached via email
Notes:
Additional notes on the electronic mailing lists
Last update basic details/teaching staff:
Tuesday, October 1, 2024 
Last update times:
Tuesday, October 1, 2024 
Last update rooms:
Tuesday, October 1, 2024 
Type(s) / SWS (hours per week per semester)
project (Pj) / 4
Department
Faculty of Technology
Questions or corrections?
Questions or correction requests for this course?
Planning support
Clashing dates for this course
Links to this course
If you want to set links to this course page, please use one of the following links. Do not use the link shown in your browser!
The following link includes the course ID and is always unique:
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=494410280
Send page to mobile
Click to open QR code
Scan QR code: Enlarge QR code
ID
494410280