Partial differential equations (PDEs) are widely used in the modeling of complex natural processes. Their numerical solution is therefore of great
importance for many scientific and engineering disciplines.
In this course we focus on practical aspects of numerical approximation of PDEs problems. We review basic theory and algorithms for numerical
solution of (nonlinear and time-dependent) PDEs and implement numerical schemes for a number problems using finite element software.
The course constitutes a part of the Module 24-M-SV1-ND when taken together with the 2+1 course "Qualitative Analysis of PDE Models" in WS 15/16.
Frequency | Weekday | Time | Format / Place | Period | |
---|---|---|---|---|---|
wöchentlich | Mo | 10-13 | U2-135 | 07.04.-17.07.2015
not on: 5/25/15 |
Module | Course | Requirements | |
---|---|---|---|
24-FIP Freie Individuelle Profilierung Mathematik | Vorlesung mit integrierter Übung (4 LVS) aus dem Nichtstandardcurriculum | Study requirement
Graded examination |
Student information |
24-M-P1 Profilierung 1 | Profilierungsvorlesung (mit Übung) - Typ 2 | Study requirement
|
Student information |
- | Graded examination | Student information | |
24-M-P2 Profilierung 2 | Profilierungsvorlesung (mit Übungen) - Typ 2 | Study requirement
|
Student information |
24-M-SV1-ND Spezialisierung/Vertiefung 1 - Numerische und Diskrete Mathematik | Spezialisierungskurs Numerische / Diskrete Mathematik | Student information |
The binding module descriptions contain further information, including specifications on the "types of assignments" students need to complete. In cases where a module description mentions more than one kind of assignment, the respective member of the teaching staff will decide which task(s) they assign the students.