Homological algebra is the algebra that was invented in order to define and study the homology and cohomology of topological spaces, but it has applications all over mathematics. Planned contents (subject to change):
Abelian categories
Projective, injective and flat modules
Complexes
Resolutions, Ext and Tor
Applications to commutative algebra and group actions
Triangulated categories and derived categories
Students are expected to already have some familiarity with rings and modules
Frequency | Weekday | Time | Format / Place | Period |
---|
Module | Course | Requirements | |
---|---|---|---|
24-M-P1 Profilierung 1 | Profilierungsvorlesung (mit Übung) - Typ 1 | Student information | |
24-M-P1a Profilierung 1 Teil A | Profilierungsvorlesung (mit Übung) - Typ 1 | Student information | |
- | Graded examination | Student information | |
24-M-P1b Profilierung 1 Teil B | Profilierungsvorlesung (mit Übung) - Typ 1 | Student information | |
- | Graded examination | Student information | |
24-M-P2 Profilierung 2 | Profilierungsvorlesung (mit Übungen) - Typ 1 | Student information | |
24-M-PWM Profilierung Wirtschaftsmathematik | Profilierungsvorlesung (mit Übung) - Typ 1 | Student information | |
- | Graded examination | Student information | |
24-M-SV1-AL Spezialisierung/Vertiefung 1 - Algebra | Spezialisierungskurs Algebra | Graded examination
|
Student information |
The binding module descriptions contain further information, including specifications on the "types of assignments" students need to complete. In cases where a module description mentions more than one kind of assignment, the respective member of the teaching staff will decide which task(s) they assign the students.