270216 Statistik III - Computergestützte Datenanalyse (V) (WiSe 2024/2025)

Contents, comment

Die Vorlesung führt aufbauend auf Statistik I und II in weiterführende grundlegende Verfahren der statistischen Auswertung psychologischer Untersuchungen ein. In anwendungsnahen Beispielen werden die einzelnen Verfahren eingeführt und die inhaltliche Interpretation der statistischen Resultate besprochen. Für die Auswertung wird das Statistikprogramm "R" genutzt.

In der Übung zur Computergestützten Datenanalyse werden die Inhalte der Vorlesung in „R“ weitergehend eingeübt.

Inhalte:
1. Datenvisualisierung
2. Multiple lineare Regression
3. Mittelwertvergleiche + kategoriale Regressoren + Varianzanalyse
4. Moderierte Regression + Interaktion
5. Mediationsanalyse
6. Pfadmodelle
7. SEM mit CFA-Messmodellen
8. Analyse von Kontingenztabellen
9. Verfahren für Rangdaten (Wilcoxon, Mann-Whitney tests)
10. Logistische Regression (GLM)

Der erste Termin findet am 15.10.2024 im hybriden Format statt. Der Zoom-Link ist bei der Veranstaltung. hinterlegt. Der Donnerstagstermin wird online asynchron angeboten.

Requirements for participation, required level

Bachelor-Studiengang (Hauptfach): GM-Stat (neues Modell, 4 LVS Variante)

Die Vorlesung richtet sich an Studierende des dritten Fachsemesters. Kenntnisse aus den Vorlesungen Statistik I und II werden vorausgesetzt.

Bibliography

Eid, M., Gollwitzer, M. & Schmitt, M.(2011). Statistik und Forschungs-methoden. Weinheim: Beltz.
Luhmann, M. (2015). R für Einsteiger. Weinheim: Beltz

Teaching staff

Dates ( Calendar view )

Frequency Weekday Time Format / Place Period  
weekly Di 10-12 U2-233 14.10.2024-31.01.2025
not on: 12/24/24 / 12/31/24
weekly Do 8-10 ONLINE   14.10.2024-31.01.2025

Hide passed dates <<

Subject assignments

Module Course Requirements  
27-GM-Stat Inferenzstatistik und computergestützte Datenauswertung GM-Stat.2: Statistik III - Inferenzstatistik und computergestützte Datenauswertung Graded examination
Student information

The binding module descriptions contain further information, including specifications on the "types of assignments" students need to complete. In cases where a module description mentions more than one kind of assignment, the respective member of the teaching staff will decide which task(s) they assign the students.


Für die Vergabe von Leistungspunkten muss die Klausur am Ende des Semesters bestanden werden.

E-Learning Space
E-Learning Space
Moodle Courses
Moodle Courses

This course has a video conference. Details will be displayed to you as a participant of this course. For an event with participant management, you must also be registered as attending by the teaching staff.

Logon to electronic course catalogue (eKVV)

Registered number: 270
This is the number of students having stored the course in their timetable. In brackets, you see the number of users registered via guest accounts.
Limitation of the number of participants:
Limited number of participants: 160
Address:
WS2024_270216@ekvv.uni-bielefeld.de
This address can be used by teaching staff, their secretary's offices as well as the individuals in charge of course data maintenance to send emails to the course participants. IMPORTANT: All sent emails must be activated. Wait for the activation email and follow the instructions given there.
If the reference number is used for several courses in the course of the semester, use the following alternative address to reach the participants of exactly this: VST_466779470@ekvv.uni-bielefeld.de
Coverage:
277 Students to be reached directly via email
Notes:
Additional notes on the electronic mailing lists
Last update basic details/teaching staff:
Saturday, October 12, 2024 
Last update times:
Thursday, July 18, 2024 
Last update rooms:
Thursday, July 18, 2024 
Type(s) / SWS (hours per week per semester)
lecture (V) / 4
Department
Faculty of Psychology and Sports Science / Department of Psychology
Questions or corrections?
Questions or correction requests for this course?
Planning support
Clashing dates for this course
Links to this course
If you want to set links to this course page, please use one of the following links. Do not use the link shown in your browser!
The following link includes the course ID and is always unique:
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=466779470
Send page to mobile
Click to open QR code
Scan QR code: Enlarge QR code
ID
466779470