392002 Übungen zu Grundlagen künstlicher Kognition II (Ü) (SoSe 2014)

Contents, comment

Es werden verschiedene Probleme des maschinellen Lernens und der Neuroinformatik formalisiert und unterschiedliche Algorithmen eingeführt, die Beispielprobleme in konkreten Situationen algorithmisch lösen können. Themen sind etwa: Klassifikation und Regression durch Lazy learning, lineare Verfahren, Perzeptron/Adatron, Bayes-Klassifikator, zeitliche Aspekte behandelt durch MDPs, unüberwachte Verfahren wie Oja/Sanger, Fuzzy-Clustering, Grundlagen der Lerntheorie.

Teaching staff

Dates ( Calendar view )

Frequency Weekday Time Format / Place Period  
weekly Do 10-12 C01-148 07.04.-18.07.2014
not on: 5/1/14 / 5/29/14 / 6/19/14
weekly Do 14-16 S2-143 07.04.-18.07.2014
not on: 5/1/14 / 5/29/14 / 6/19/14
weekly Do 16-18 C01-148 07.04.-18.07.2014
not on: 5/1/14 / 5/29/14 / 6/19/14
weekly Fr 12-14 C01-148 07.04.-18.07.2014
not on: 4/18/14
weekly Fr 12-14 S2-121 07.04.-18.07.2014
not on: 4/18/14
one-time Mi 14:00-16:00 C01-148 23.07.2014

Hide passed dates <<

Subject assignments

Module Course Requirements  
39-Inf-13 Grundlagen künstlicher Kognition Grundlagen künstlicher Kognition II Ungraded examination
Student information

The binding module descriptions contain further information, including specifications on the "types of assignments" students need to complete. In cases where a module description mentions more than one kind of assignment, the respective member of the teaching staff will decide which task(s) they assign the students.


No more requirements
No eLearning offering available
Registered number: 66
This is the number of students having stored the course in their timetable. In brackets, you see the number of users registered via guest accounts.
Address:
SS2014_392002@ekvv.uni-bielefeld.de
This address can be used by teaching staff, their secretary's offices as well as the individuals in charge of course data maintenance to send emails to the course participants. IMPORTANT: All sent emails must be activated. Wait for the activation email and follow the instructions given there.
If the reference number is used for several courses in the course of the semester, use the following alternative address to reach the participants of exactly this: VST_45073478@ekvv.uni-bielefeld.de
Coverage:
12 Students to be reached directly via email
Notes:
Additional notes on the electronic mailing lists
Last update basic details/teaching staff:
Friday, December 11, 2015 
Last update times:
Thursday, October 22, 2015 
Last update rooms:
Wednesday, July 16, 2014 
Type(s) / SWS (hours per week per semester)
exercise (Ü) / 2
Department
Faculty of Technology
Questions or corrections?
Questions or correction requests for this course?
Planning support
Clashing dates for this course
Links to this course
If you want to set links to this course page, please use one of the following links. Do not use the link shown in your browser!
The following link includes the course ID and is always unique:
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=45073478
Send page to mobile
Click to open QR code
Scan QR code: Enlarge QR code
ID
45073478