240053 Geometrie und Topologie II (Algebraische Topologie) (V) (SoSe 2014)

Contents, comment

Die Vorlesung soll in das Zusammenspiel von algebraischen und homotopietheoretischen Methoden zum Studium topologischer Räume einführen. Diese sind nicht nur grundlegend in der Topologie sondern haben auch Anwendungen in z.B. Algebra und Geometrie.

We will study the interplay between algebraic and homotopy-theoretic methods in the study of topological spaces. These are not only foundational in Topology but have applications also in Algebra and Geometry.

Requirements for participation, required level

Geometrie & Topologie I, genauer topologische Grundbegriffe und Fundamentalgruppe.

Basic notions of topology including the fundamental group.

Falls nötig wird die Veranstaltung in englischer Sprache abgehalten.
If necessary the course will be taught in English.

Bibliography

A. Hatcher: Algebraic Topology
http://www.math.cornell.edu/~hatcher/AT/ATpage.html

J.P. May: A concise introduction to algebraic topology
http://www.math.uchicago.edu/~may/CONCISE/ConciseRevised.pdf

Beide Bücher sind auch in der Bibliothek verfügbar. Both books are also available in the University Library.

Teaching staff

Dates ( Calendar view )

Frequency Weekday Time Format / Place Period  

Show passed dates >>

Subject assignments

Module Course Requirements  
24-M-P1 Profilierung 1 Profilierungsvorlesung (mit Übung) - Typ 1 Student information
- Graded examination Student information
24-M-P2 Profilierung 2 Profilierungsvorlesung (mit Übungen) - Typ 1 Student information
24-M-PWM Profilierung Wirtschaftsmathematik Profilierungsvorlesung (mit Übung) - Typ 1 Student information
- Graded examination Student information
24-M-SV1-AN Spezialisierung/Vertiefung 1 - Analysis Spezialisierungskurs Analysis Graded examination
Student information
24-SE Strukturierte Ergänzung Vorlesung 1 Student information
Vorlesung 2 Student information
24-SP Spezialisierung Vorlesung gemäß Modulbeschreibung Graded examination
Student information

The binding module descriptions contain further information, including specifications on the "types of assignments" students need to complete. In cases where a module description mentions more than one kind of assignment, the respective member of the teaching staff will decide which task(s) they assign the students.

Degree programme/academic programme Validity Variant Subdivision Status Semester LP  
Mathematik / Bachelor (Enrollment until SoSe 2011) Kernfach MM09a; MM10 Wahlpflicht 4. 5. 7 benotet  
Mathematik / Diplom (Enrollment until SoSe 2008) Wahl 5. 6. 7. 8. scheinfähig HS
Mathematik (Gym/Ge als zweites U-Fach) / Master of Education (Enrollment until SoSe 2014) M.M.10 Wahlpflicht 4. 7 benotet  
Mathematik (Gym/Ge fortgesetzt) / Master of Education (Enrollment until SoSe 2014) M.M.10 Wahlpflicht 2. 3. 7 benotet  
Studieren ab 50    
Wirtschaftsmathematik (1-Fach) / Bachelor (Enrollment until SoSe 2011) M.WM.14; M.WM.15 Wahlpflicht 4. 5. 6. 7 benotet  

No more requirements
No eLearning offering available
Address:
SS2014_240053@ekvv.uni-bielefeld.de
This address can be used by teaching staff, their secretary's offices as well as the individuals in charge of course data maintenance to send emails to the course participants. IMPORTANT: All sent emails must be activated. Wait for the activation email and follow the instructions given there.
If the reference number is used for several courses in the course of the semester, use the following alternative address to reach the participants of exactly this: VST_43686268@ekvv.uni-bielefeld.de
Notes:
Additional notes on the electronic mailing lists
Last update basic details/teaching staff:
Friday, December 11, 2015 
Last update times:
Tuesday, March 18, 2014 
Last update rooms:
Tuesday, March 18, 2014 
Type(s) / SWS (hours per week per semester)
lecture (V) / 4
Language
This lecture is taught in english
Department
Faculty of Mathematics
Questions or corrections?
Questions or correction requests for this course?
Planning support
Clashing dates for this course
Links to this course
If you want to set links to this course page, please use one of the following links. Do not use the link shown in your browser!
The following link includes the course ID and is always unique:
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=43686268
Send page to mobile
Click to open QR code
Scan QR code: Enlarge QR code
ID
43686268