240023 Funktionentheorie (V) (WiSe 2022/2023)

Contents, comment

Als Funktionentheorie bezeichnet man traditionell die Theorie der komplex-differenzierbaren Funktionen auf offenen Teilmengen der komplexen Ebene. Die Kraft der Resultate dieser Therie beruht darauf, dass solche Funktionen immer analytisch und somit starr sind. Außerdem definieren sie winkeltreue Abbildungen, und sie verhalten sie sich wie divergenzfreie Felder, wobei die Stammfunktion die Rolle des Potentials spielt. Alle elementaren Funktionen setzen sich zu komplex-differenzierbaren Funktionen fort, aber damit sind diese nicht erschöpft. Sie haben umfangreiche Anwendungen in Mathematik und Physik.

Requirements for participation, required level

Analysis I und II

Bibliography

Klaus Jänich, Funktionentheorie: eine Einführung.
https://katalogplus.ub.uni-bielefeld.de/title/HT011130050

Teaching staff

Dates ( Calendar view )

Frequency Weekday Time Format / Place Period  
weekly Mo 14-16 U2-119 10.10.2022-03.02.2023
not on: 12/26/22 / 1/2/23
weekly Mi 14-16 U2-200 10.10.2022-03.02.2023
not on: 12/28/22 / 1/4/23
one-time Mo 9:30-12:00 V2-213 20.03.2023 mündliche Prüfungen

Hide passed dates <<

Subject assignments

Module Course Requirements  
24-B-PRO_ver1 Profilierung Vorlesung gemäß Modulbeschreibung Graded examination
Student information
24-B-PSE-5a Profilierung Strukturierte Ergänzung a (5LP) Vorlesung gemäß Modulbeschreibung Student information
24-B-PSE-5b Profilierung Strukturierte Ergänzung b (5LP) Vorlesung gemäß Modulbeschreibung Student information
24-B-PSE_ver1 Profilierung Strukturierte Ergänzung Vorlesung gemäß Modulbeschreibung Graded examination
Student information
24-M-GM Grundlagen Mathematik Spezialisierungskurs Mathematik Graded examination
Student information

The binding module descriptions contain further information, including specifications on the "types of assignments" students need to complete. In cases where a module description mentions more than one kind of assignment, the respective member of the teaching staff will decide which task(s) they assign the students.

Degree programme/academic programme Validity Variant Subdivision Status Semester LP  
Studieren ab 50    

No more requirements
E-Learning Space
E-Learning Space
Address:
WS2022_240023@ekvv.uni-bielefeld.de
This address can be used by teaching staff, their secretary's offices as well as the individuals in charge of course data maintenance to send emails to the course participants. IMPORTANT: All sent emails must be activated. Wait for the activation email and follow the instructions given there.
If the reference number is used for several courses in the course of the semester, use the following alternative address to reach the participants of exactly this: VST_359630970@ekvv.uni-bielefeld.de
Notes:
Additional notes on the electronic mailing lists
Email archive
Number of entries 1
Open email archive
Last update basic details/teaching staff:
Thursday, July 7, 2022 
Last update times:
Thursday, March 16, 2023 
Last update rooms:
Thursday, March 16, 2023 
Type(s) / SWS (hours per week per semester)
lecture (V) / 4
Department
Faculty of Mathematics
Questions or corrections?
Questions or correction requests for this course?
Planning support
Clashing dates for this course
Links to this course
If you want to set links to this course page, please use one of the following links. Do not use the link shown in your browser!
The following link includes the course ID and is always unique:
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=359630970
Send page to mobile
Click to open QR code
Scan QR code: Enlarge QR code
ID
359630970