240904 Modulformen (V) (SoSe 2012)

Contents, comment

"Es gibt fünf Grundrechenarten: Addition, Subtraktion, Multikplikation, Division und Modulformen." (Martin Eichler)

Modulformen sind holomorphe Funktionen auf der oberen Halbebene, die ein einfaches Transformationsverhalten unter gebrochen rationalen Transformationen aufweisen.
Einerseits haben Modulformen vielfältige Anwendungen in der Zahlentheorie (sie spielen zB eine zentrale Rolle beim Beweis der Fermat-Vermutung), andererseits kann man explizite Rechnungen mit ihnen durchführen (diverse Computeralgebraprogramme wie zB SAGE haben Pakete zum Rechnen mit Modulformen).

mögliche Themen:
-L-Reihen und Hecke-Operatoren
-Gitter und Thetareihen
-Eisensteinreihen und die Rankin-Selberg-Methode
-Modulare Symbole, Computeralgebra und p-adische L-Funktionen
-Modulräume und elliptische Kurven

Requirements for participation, required level

Vorkenntnisse: LA I+II und Analysis I+II, Funktionentheorie
(Die benötigten Resultate aus der Funktionentheorie können bei Bedarf in den Übungen behandelt werden.)

Bibliography

Bücher:
J.H. Bruinier, G. Harder, G. van der Geer, D. Zagier: The 1-2-3 of modular forms
D. Bump: Automorphic forms and representations
A. Deitmar: Automorphe Formen
F. Diamond, J. Shurman: A first course in modular forms
H. Hida: Elementary theory of L-functions and Eisenstein series
T. Miyake: Modular forms
J.-P. Serre: A Course in Arithmetic
G. Shimura: Introduction to the arithmetic theory of automorphic forms

Online Skripte:
J. Milne: Modular Functions and Modular Forms
K. Ribet, W. Stein: Lectures on Modular Forms and Hecke Operators
W. Stein: Modular Forms: A Computational Approach
G. Wiese: Vorlesung über Modulformen

Teaching staff

Dates ( Calendar view )

Frequency Weekday Time Format / Place Period  
weekly Mo 16-18 V2-200 02.04.-13.07.2012
not on: 4/9/12 / 5/28/12
weekly Do 16-18 V2-200 02.04.-13.07.2012
not on: 5/17/12 / 6/7/12

Hide passed dates <<

Subject assignments

Degree programme/academic programme Validity Variant Subdivision Status Semester LP  
Mathematik / Bachelor (Enrollment until SoSe 2011) Kern- und Nebenfach MM09a Pflicht  
Mathematik / Diplom (Enrollment until SoSe 2008) Pflicht 4. 5. 6. 7. 8. GS und HS
Mathematik / Master (Enrollment until SoSe 2011) MM01S; MM05S; MM06S    

No more requirements
No eLearning offering available
Address:
SS2012_240904@ekvv.uni-bielefeld.de
This address can be used by teaching staff, their secretary's offices as well as the individuals in charge of course data maintenance to send emails to the course participants. IMPORTANT: All sent emails must be activated. Wait for the activation email and follow the instructions given there.
If the reference number is used for several courses in the course of the semester, use the following alternative address to reach the participants of exactly this: VST_30094588@ekvv.uni-bielefeld.de
Notes:
Additional notes on the electronic mailing lists
Last update basic details/teaching staff:
Friday, December 11, 2015 
Last update times:
Monday, February 13, 2012 
Last update rooms:
Monday, February 13, 2012 
Type(s) / SWS (hours per week per semester)
lecture (V) / 4
Department
Faculty of Mathematics
Questions or corrections?
Questions or correction requests for this course?
Planning support
Clashing dates for this course
Links to this course
If you want to set links to this course page, please use one of the following links. Do not use the link shown in your browser!
The following link includes the course ID and is always unique:
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=30094588
Send page to mobile
Click to open QR code
Scan QR code: Enlarge QR code
ID
30094588