240034 Proseminar Kettenbrüche (PS) (SoSe 2021)

Contents, comment

Der Kettenbruchalgorithmus liefert rationale Näherungsbrüche für irrationale Zahlen. Bestimmte Eigenschaften einer irrationalen Zahl kann man an ihrem Kettenbruch ablesen.

So ist z. B. die Folge der Teilnenner des Kettenbruchs genau dann periodisch, wenn die Irrationalzahl Lösung einer quadratischen Gleichung mit rationalen Koeffizienten ist. In diesem Fall hängt der Kettenbruchalgorithmus eng mit dem Gaußschen Reduktionsalgorithmus für ganzzahlige quadratische Formen zusammen.

Auch die Lösungen von Gleichungen beliebigen Grades (sogenannte algebraische Zahlen) kann man durch die Güte ihrer Approximationen charakterisieren, und dies lieferte die früheste Konstruktion transzendenter, d. h. nichtalgebraischer Zahlen.

Kettenbrüche lassen sich auch mit Funktionen bilden und liefern Approximationen von Potenzreihen durch rationale Funktionen.

Bibliography

Für eine erste Bekanntschaft mit dem Thema sei auf folgende elementare Einführungen verwiesen:

  • C. G. Moore, An Introduction to Continued Fractions, The National Council of Teachers of Mathematics, Washington, DC, 1964. QC420 M821
  • C. D. Olds, Continued Fractions, Random House, 1963. QC420 O44

Teaching staff

Dates ( Calendar view )

Frequency Weekday Time Format / Place Period  

Show passed dates >>

Subject assignments

Module Course Requirements  
24-B-GEO_ver1 Geometrie (Gym/Ge) Proseminar Study requirement
Ungraded examination
Student information
24-B-PX Praxismodul Proseminar Study requirement
Ungraded examination
Student information
24-E Ergänzungsmodul Mathematik Proseminar Study requirement
Ungraded examination
Student information

The binding module descriptions contain further information, including specifications on the "types of assignments" students need to complete. In cases where a module description mentions more than one kind of assignment, the respective member of the teaching staff will decide which task(s) they assign the students.


No more requirements
E-Learning Space
E-Learning Space
Limitation of the number of participants:
Limited number of participants: 15
Address:
SS2021_240034@ekvv.uni-bielefeld.de
This address can be used by teaching staff, their secretary's offices as well as the individuals in charge of course data maintenance to send emails to the course participants. IMPORTANT: All sent emails must be activated. Wait for the activation email and follow the instructions given there.
If the reference number is used for several courses in the course of the semester, use the following alternative address to reach the participants of exactly this: VST_253950817@ekvv.uni-bielefeld.de
Notes:
Additional notes on the electronic mailing lists
Email archive
Number of entries 0
Open email archive
Last update basic details/teaching staff:
Wednesday, April 28, 2021 
Last update times:
Tuesday, April 20, 2021 
Last update rooms:
Tuesday, April 20, 2021 
Type(s) / SWS (hours per week per semester)
proseminar (PS) / 2
Department
Faculty of Mathematics
Questions or corrections?
Questions or correction requests for this course?
Planning support
Clashing dates for this course
Links to this course
If you want to set links to this course page, please use one of the following links. Do not use the link shown in your browser!
The following link includes the course ID and is always unique:
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=253950817
Send page to mobile
Click to open QR code
Scan QR code: Enlarge QR code
ID
253950817