Start my eKVV Studieninformation Lernräume Prüfungsverwaltung Bewerbungs-/Statusportal Anmelden

392249 ISY Project: Variational Autoencoders for Multisensory Data (Pj) (SoSe 2019)

Inhalt, Kommentar

Variational autoencoders (VAE) let us design generative models and derive compact representation of complex data. A VAE is a type of artificial neural network used to learn efficient data codings in an unsupervised manner [1, 2, 3], whereas the aim is to learn an ideally linear separable representation (encoding) for a dimensionality reduction. Along with the encoder network, a decoder network is learnt, which tries to generate the original data from the encoding, hence its name.

In this project, we will test different VAE models [4, 5] and conduct experiments in robotics simulated environments [6, 7]. In-hand manipulation of objects lends itself for testing compact representations of multisensory data (touch, vision, proprioception). The derivation of a compact representation is an important preprocessing step for deep reinforcement learning approaches, since it enables faster and more stable convergence to the optimal policy.

[1] https://en.wikipedia.org/wiki/Autoencoder#Variational_autoencoder_.28VAE.29
[2] https://jaan.io/what-is-variational-autoencoder-vae-tutorial
[3] https://www.youtube.com/results?search_query=variational+autoencoder
[4] http://geometry.cs.ucl.ac.uk/dl4g/slides/part7_3DdataGeometryPhysics.pdf
[5] http://geometry.cs.ucl.ac.uk/creativeai/slides/part7_3Ddomains_niloy.pdf
[6] https://drive.google.com/open?id=1J2H92AstGpcFYqjmVymMSRKI5xISdB1b
[7] http://gym.openai.com/envs/#robotics

Please note that the teams will be selected by the supervisors on the basis of short applications that students are expected to send to them. Registering to the project in the ekVV will only be regarded as expression of interest; it will not secure a team membership. Please get in touch with the supervisors for information on the application procedure.

Teilnahmevoraussetzungen, notwendige Vorkenntnisse

Required skills:

  • Introduction to Neural Networks course or Advanced Neural Networks
  • Python or C++ (>= 1 year)

Lehrende

Termine (Kalendersicht )

Rhythmus Tag Uhrzeit Ort Zeitraum  

Zeige vergangene Termine >>

Fachzuordnungen

Modul Veranstaltung Leistungen  
39-M-Inf-GP Grundlagenprojekt Intelligente Systeme Gruppenprojekt unbenotete Prüfungsleistung
Studieninformation

Die verbindlichen Modulbeschreibungen enthalten weitere Informationen, auch zu den "Leistungen" und ihren Anforderungen. Sind mehrere "Leistungsformen" möglich, entscheiden die jeweiligen Lehrenden darüber.

Konkretisierung der Anforderungen
Keine Konkretisierungen vorhanden
Lernraum
Teilnehmer*innen
Automatischer E-Mailverteiler der Veranstaltung
Änderungen/Aktualität der Veranstaltungsdaten
Sonstiges