240142 Topologie IV (V) (WiSe 2004/2005)

This course has been cancelled!

Short comment

Contents, comment

Die Vorlesung Topologie IV soll das Bild der (algebraischen) Topologie, das in den Veranstaltungen Topologie I-III vermittelt wurde, abrunden. Im Vordergrund stehen weiterhin Fragen der Homotopie-Theorie, vor allem die Frage nach den Homotopiegruppen der Sphären.
Weitere Hinweise findet man unter
http://www.mathematik.uni-bielefeld.de/birep/top/.
Insbesondere gibt es dort eine Vielzahl von Materialien zu den bisherigen Lehrveranstaltungen.

Die Vorlesung wird auf Englisch gehalten. Aktive Mitarbeit der Hörer wird erwartet.

English:
The aim of the course is to provide further insight into some of the main questions in (algebraic) topology, the focus will continue to lie on homotopy theory, in particular on the structure of the homotopy groups of spheres.
Further information is provided under http://www.mathematik.uni-bielefeld.de/birep/top/. In particular, you may obtain in this way material concerning the previous courses Topology I, II, III and the two topology seminars on the Hopf Invariant and on the Stable Homotopy Category (Freyd's La Jolla paper).

The lectures will be given in English, some of the investigations will be done in cooperation with the audience.

Requirements for participation, required level

Die Vorlesung Topologie IV schließt an die Vorlesungen Topologie I (SS 2003), Topologie II (WS 2003/4) und Topologie III (SS 2004) an.
Vorausgesetzt werden also Grundbegriffe, Ergebnisse und Methoden der mengentheoretischen, vor allem aber der algebraischen Topologie. Es wird davon ausgegangen, dass die Teilnehmer mit der Konstruktion von CW-Komplexen und mit Postnikov-Türmen vertraut sind und selbst schon mit Spektralfolgen (zumindest mit der Serre'schen Spektralfolge von Faserungen) gearbeitet haben.

English:
The course is a continuation of the lectures given by me during the last three terms (SS 2003, WS 2003/04, WS 2004) with titles Topology I, II, III.
The participants are assumed to be familiar with the basic notions of (set-theoretical as well as algebraic) topology, in particular they should know well the construction of CW-complexes and the use of Postnikov towers. A working knowledge on spectral sequences (at least of the Serre spectral sequence of a fibration) will be necessary.

External comments page

http://www.mathematik.uni-bielefeld.de/birep/top/

Teaching staff

Dates ( Calendar view )

  • Cancelled

Subject assignments

Degree programme/academic programme Validity Variant Subdivision Status Semester LP  
Mathematik / Diplom (Enrollment until SoSe 2008) Wahl Graduierte
Mathematik / Diplom (Enrollment until SoSe 2008) SpezSeq Wahlpflicht GS und HS
Mathematik / Lehramt Sekundarstufe II Wahlpflicht GS und HS
Mathematik / Magister Nebenfach Wahlpflicht GS und HS

No more requirements
No eLearning offering available
Address:
WS2004_240142@ekvv.uni-bielefeld.de
This address can be used by teaching staff, their secretary's offices as well as the individuals in charge of course data maintenance to send emails to the course participants. IMPORTANT: All sent emails must be activated. Wait for the activation email and follow the instructions given there.
If the reference number is used for several courses in the course of the semester, use the following alternative address to reach the participants of exactly this: VST_1106289@ekvv.uni-bielefeld.de
Notes:
Additional notes on the electronic mailing lists
Last update basic details/teaching staff:
Friday, December 11, 2015 
Last update times:
Wednesday, September 22, 2004 
Last update rooms:
Wednesday, September 22, 2004 
Type(s) / SWS (hours per week per semester)
lecture (V) / 2
Department
Faculty of Mathematics
Questions or corrections?
Questions or correction requests for this course?
Planning support
Clashing dates for this course
Links to this course
If you want to set links to this course page, please use one of the following links. Do not use the link shown in your browser!
The following link includes the course ID and is always unique:
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=1106289
Send page to mobile
Click to open QR code
Scan QR code: Enlarge QR code
ID
1106289