240031 Proseminar "Quadratische Formen" (PS) (SoSe 2021)

Contents, comment

Zum Inhalt des Proseminars:
Eine quadratische Form über einem Körper K ist in geeigneten Koordinaten ein Ausdruck q(x) = a_1 x_1^2 + a_2 x_2^2 + ... + a_n x_n^2 mit a_1, a_2, ..., a_n in K. Über den reellen Zahlen werden quadratische Formen durch ihre Signatur klassifiziert. Die zugehörigen Quadriken {x ∈ R^n ; Q(x) = r} lassen sich geometrisch unter anderem durch den Satz von der Hauptachsentransformation beschreiben.

Das Proseminar wird die Arithmetik quadratischer Formen beleuchten. Ein Hauptziel ist das lokal-global Prinzip von Hasse und Minkowski: eine quadratische Form über Q hat eine Nullstelle, wenn sie überall lokal eine Nullstelle hat. Dies illustriert eine fundamentale Technik der Zahlentheorie, die Aspekte bezüglich einer fixierten Primzahl p durch Übergang zum lokalen Körper Q_p der p-adischen Zahlen isoliert zu betrachten. Die Aspekte der Positivität und Größe studiert man durch Übergang zum lokalen Körper R.

Was man lernt: quadratisches Reziprozitätsgesetz, p-adische Zahlen, Invarianten von quadratische Formen, Grothendieck Gruppen.

Vorbesprechung: Donnerstag 25.02.21, 10:15 Uhr, auf Zoom :
https://uni-bielefeld.zoom.us/j/2832073545?pwd=aUxadE8yTVJkLyt1Y3VZUEdOMHRZZz09
Meeting ID: 283 207 3545
Passcode: o4ik5jn3k

Teaching staff

Dates ( Calendar view )

Frequency Weekday Time Format / Place Period  
weekly Do 12-14 ONLINE   12.04.-23.07.2021

Hide passed dates <<

Subject assignments

Module Course Requirements  
24-B-GEO_ver1 Geometrie (Gym/Ge) Proseminar Study requirement
Ungraded examination
Student information
24-B-PX Praxismodul Proseminar Study requirement
Ungraded examination
Student information
24-E Ergänzungsmodul Mathematik Proseminar Study requirement
Ungraded examination
Student information

The binding module descriptions contain further information, including specifications on the "types of assignments" students need to complete. In cases where a module description mentions more than one kind of assignment, the respective member of the teaching staff will decide which task(s) they assign the students.


No more requirements
E-Learning Space
E-Learning Space
Registered number: 10
This is the number of students having stored the course in their timetable. In brackets, you see the number of users registered via guest accounts.
Limitation of the number of participants:
Limited number of participants: 15
Address:
SS2021_240031@ekvv.uni-bielefeld.de
This address can be used by teaching staff, their secretary's offices as well as the individuals in charge of course data maintenance to send emails to the course participants. IMPORTANT: All sent emails must be activated. Wait for the activation email and follow the instructions given there.
If the reference number is used for several courses in the course of the semester, use the following alternative address to reach the participants of exactly this: VST_253950698@ekvv.uni-bielefeld.de
Coverage:
4 Students to be reached directly via email
Notes:
Additional notes on the electronic mailing lists
Email archive
Number of entries 0
Open email archive
Last update basic details/teaching staff:
Thursday, January 7, 2021 
Last update times:
Tuesday, April 13, 2021 
Last update rooms:
Tuesday, April 13, 2021 
Type(s) / SWS (hours per week per semester)
proseminar (PS) / 2
Department
Faculty of Mathematics
Questions or corrections?
Questions or correction requests for this course?
Planning support
Clashing dates for this course
Links to this course
If you want to set links to this course page, please use one of the following links. Do not use the link shown in your browser!
The following link includes the course ID and is always unique:
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=253950698
Send page to mobile
Click to open QR code
Scan QR code: Enlarge QR code
ID
253950698