Affective computing deals systems that process or simulate human affect, including emotions, through the analysis of human behavior. Increasingly applications for the detection of affect and emotions are moving toward the use of deep learning and other black box models. Due to the strongly personal nature of behavior analysis and significant variations in emotional expression between individuals, models should be made transparent and explainable. In this seminar, we will learn about state-of-the-art approaches and associated challenges for explainable affective computing. Since affective computing typical deals with multimodal data, this seminar will look at explainability methods for visual, audio, and text data. Additionally, we will explore emerging research in explainability for multimodal systems. This seminar will include both theoretical and practical methods. Therefore, you will be expected to have a working knowledge of implementing and working with deep learning models in TensorFlow and Keras.
Rhythmus | Tag | Uhrzeit | Format / Ort | Zeitraum |
---|
Modul | Veranstaltung | Leistungen | |
---|---|---|---|
39-Inf-EGMI Ergänzungsmodul Informatik | vertiefendes Seminar 1 | unbenotete Prüfungsleistung
|
Studieninformation |
vertiefendes Seminar 2 | unbenotete Prüfungsleistung
|
Studieninformation | |
vertiefendes Seminar 3 | unbenotete Prüfungsleistung
|
Studieninformation | |
vertiefendes Seminar 4 | unbenotete Prüfungsleistung
|
Studieninformation | |
39-M-Inf-AI-adv Advanced Artificial Intelligence | Advanced Artificial Intelligence: Seminar 1 | Studienleistung
|
Studieninformation |
Advanced Artificial Intelligence: Seminar 2 | benotete Prüfungsleistung
|
Studieninformation | |
39-M-Inf-INT-adv Advanced Interaction Technology | Advanced Interaction Technology: Seminar 1 | Studienleistung
|
Studieninformation |
Advanced Interaction Technology: Seminar 2 | benotete Prüfungsleistung
|
Studieninformation | |
39-M-Inf-VKI Vertiefung Künstliche Intelligenz | Spezielle Themen der Künstlichen Intelligenz | unbenotete Prüfungsleistung
benotete Prüfungsleistung |
Studieninformation |
Die verbindlichen Modulbeschreibungen enthalten weitere Informationen, auch zu den "Leistungen" und ihren Anforderungen. Sind mehrere "Leistungsformen" möglich, entscheiden die jeweiligen Lehrenden darüber.
Zu dieser Veranstaltung existiert ein Lernraum im E-Learning System. Lehrende können dort Materialien zu dieser Lehrveranstaltung bereitstellen: