240023 Geometrie und Topologie (V) (SoSe 2017)

Contents, comment

In der Analysis haben wir schon den Begriff des topologischen Raumes kennengelernt. Ferner haben wir in der Analysis gesehen, wie sich (unter günstigen Bedingungen) Räume und Funktionen lokal verstehen lassen. Hier wollen wir die Theorie weiterentwickeln und auch globale Fragen in den Blick nehmen, z.B., die Frage ob ein zweidimensionaler und ein dreidimensionaler reeller Vektorraum überhaupt verschieden, wenn man nur die Topologie betrachtet und die lineare Struktur außer Acht läßt.

Die Vorlesung ist der Anfang einer Sequenz von zwei Vorlesungen über Geometrie und Topologie. Im Anschluß wird ein Bachelorseminar stattfinden.

Requirements for participation, required level

Analysis I und II
Lineare Algebra I und II

Bibliography

G. Bredon: Topology and Geometry (Springer GTM 139)
M. Berger, B. Gostiaux: Differential Geometry: Manifolds, Curves, and Surfaces (GTM 115)
R. Bott, L.W. Tu: Differential Forms in Algebraic Topology (GTM 82)
J.R. Munkres: Topology (Prentice Hall)

External comments page

https://www.math.uni-bielefeld.de/~bux/2017_ss--Geometrie_und_Topologie/

Teaching staff

Dates ( Calendar view )

Frequency Weekday Time Format / Place Period  

Show passed dates >>

Subject assignments

Module Course Requirements  
24-A1 Advanced Module Mathematics 1 Aufbaumodul Mathematik 1 Vorlesung gemäß Modulbeschreibung Student information
- Graded examination Student information
24-A2 Advanced Module Mathematics 2 Aufbaumodul Mathematik 2 Vorlesung gemäß Modulbeschreibung Student information
- Graded examination Student information
24-E Supplementary Module Mathematics Ergänzungsmodul Mathematik Vorlesung gemäß Modulbeschreibung Student information
24-E2 Supplementary Module Mathematics 2 Ergänzungsmodul Mathematik 2 Vorlesung Student information
24-M-GM Foundations in Mathematics Grundlagen Mathematik Spezialisierungskurs Mathematik Graded examination
Student information
24-SE Structured Electives Strukturierte Ergänzung Vorlesung 1 Student information
Vorlesung 2 Student information

The binding module descriptions contain further information, including specifications on the "types of assignments" students need to complete. In cases where a module description mentions more than one kind of assignment, the respective member of the teaching staff will decide which task(s) they assign the students.

Degree programme/academic programme Validity Variant Subdivision Status Semester LP  
Mathematik (Gym/Ge als zweites U-Fach) / Master of Education (Enrollment until SoSe 2014) M.M.05; M.M.07 Wahlpflicht 3. 4. 7 benotet  
Mathematik (Gym/Ge fortgesetzt) / Master of Education (Enrollment until SoSe 2014) M.M.07 Wahlpflicht 1. 2. 3. 7 benotet  
Studieren ab 50    

No more requirements
No eLearning offering available
Address:
SS2017_240023@ekvv.uni-bielefeld.de
This address can be used by teaching staff, their secretary's offices as well as the individuals in charge of course data maintenance to send emails to the course participants. IMPORTANT: All sent emails must be activated. Wait for the activation email and follow the instructions given there.
If the reference number is used for several courses in the course of the semester, use the following alternative address to reach the participants of exactly this: VST_90356532@ekvv.uni-bielefeld.de
Notes:
Additional notes on the electronic mailing lists
Email archive
Number of entries 0
Open email archive
Last update basic details/teaching staff:
Wednesday, February 8, 2017 
Last update times:
Thursday, April 20, 2017 
Last update rooms:
Thursday, April 20, 2017 
Type(s) / SWS (hours per week per semester)
lecture (V) / 4
Department
Faculty of Mathematics
Questions or corrections?
Questions or correction requests for this course?
Planning support
Clashing dates for this course
Links to this course
If you want to set links to this course page, please use one of the following links. Do not use the link shown in your browser!
The following link includes the course ID and is always unique:
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=90356532
Send page to mobile
Click to open QR code
Scan QR code: Enlarge QR code
ID
90356532