In this lecture, students will acquire an understanding of basic methods, algorithms and techniques in the field of statistical natural language processing. We will in particular cover the following topics:
i) corpus work,
ii) language modelling,
iii) language identification,
iv) part-of-speech tagging,
v) spelling error correction,
vi) statistical parsing and v) machine translation.
Kenntnisse in folgenden Gebieten sind von Vorteil (aber keine Voraussetzung):
Algorithmen und Datenstrukturen, Grundkenntnisse Mathematik, Theoretische Informatik (insbes. Logik)
Die Vorlesung wird auf Englisch gehalten.
Frequency | Weekday | Time | Format / Place | Period | |
---|---|---|---|---|---|
weekly | Fr | 10-12 | C01-148 | 07.04.-17.07.2015
not on: 5/1/15 |
Module | Course | Requirements | |
---|---|---|---|
39-Inf-SNLP Statistical Natural Language Processing | Exercises for Introduction to Statistical Natural Language Processing | Student information | |
Introduction to Statistical Natural Language Processing | Student information | ||
39-M-Inf-TMKD Text Mining and Knowledge Discovery | Text Mining and Knowledge Discovery | Student information |
The binding module descriptions contain further information, including specifications on the "types of assignments" students need to complete. In cases where a module description mentions more than one kind of assignment, the respective member of the teaching staff will decide which task(s) they assign the students.
Bestehen der mündlichen oder schriftlichen Prüfung (2 LP) und erfolgreiche Bearbeitung der Übungsaufgaben (3,5 LP) sowie erfolgreiches Absolvieren des Seminars/Praktikums (4,5 LP) ergeben insgesamt 10 LP.