Partial differential equations (PDEs) can be used to model various natural processes and are therefore of great importance for many practical scientific and industrial applications.
In this lecture we will discuss numerical solution of PDEs, such as the the Poisson equation that describes stationary diffusion processes. The focus will be on finite-element based discretization methods.
We study stability and convergence properties of the numerical approximations as well as some practical aspects, such as mesh adaptivity and numerical solution of corresponding linear systems of equations.
Basic knowledge of numerical methods, functional analysis and PDEs is helpful for this course, but is not required .
Frequency | Weekday | Time | Format / Place | Period |
---|
Module | Course | Requirements | |
---|---|---|---|
24-M-P1 Profilierung 1 | Profilierungsvorlesung (mit Übung) - Typ 1 | Student information | |
24-M-P2 Profilierung 2 | Profilierungsvorlesung (mit Übungen) - Typ 1 | Student information | |
24-M-PWM Profilierung Wirtschaftsmathematik | Profilierungsvorlesung (mit Übung) - Typ 1 | Student information | |
- | Graded examination | Student information | |
24-M-S2-ND Spezialisierung 2 - Numerische und Diskrete Mathematik | Masterkurs 1 Numerische / Diskrete Mathematik - Variante 1 | Student information | |
24-M-V2-ND Vertiefung 2 - Numerische und Diskrete Mathematik | Masterkurs 1 Numerische / Diskrete Mathematik - Variante 1 | Student information | |
- | Graded examination | Student information |
The binding module descriptions contain further information, including specifications on the "types of assignments" students need to complete. In cases where a module description mentions more than one kind of assignment, the respective member of the teaching staff will decide which task(s) they assign the students.