392219 Maschinelles Lernen im Web (V) (WiSe 2014/2015)

Contents, comment

Eine ständig wachsende Informationsflut im Web legt es nahe, nach Möglichkeiten zu suchen, aus der
Fülle der Daten automatisch sinnvolle Informationen oder Modelle zu extrahieren. Dabei müssen
die Algorithmen in der Lage sein, auch mit großen Datenmengen realistisch umzugehen.
Die Vorlesung behandelt wichtige Techniken des Maschinellen Lernens mit Bedeutung für das Web,
die es erlauben, automatisiert Informationen aus Daten zu extrahieren.
Behandelte Themen im Einzelnen sind:
Graph-clustering,
nichtlineare Dimensionsreduktion,
link-Analyse,
Streaming Algorithmen.
In Matlab-Übungen am Rechner direkt exemplarisch ausprobiert.

The increasing availability of electronic information on the web requires novel technologies
to deal with these data. In particular, the algorithms have to deal with big and structured data.
In the lecture, a few topics of relevance in this realm will be tackled, including
graph clustering,
nolinear dimensionality reduction,
link analysis,
streaming algotithms.
The algorithms will be tested in the exercises based on Matlab code.

Kommentar/ Comments:

The lecture will be given in English if requested.
The time slot for the lecture is not necessarily fixed, provided the majority prefers another time slot (such as Monday, 10-12; or, as an alternative, the lecture will be given as a block.)

Requirements for participation, required level

Grundkenntnisse im Bereich Algorithmen und Datenstrukturen sowie Mathematik werden empfohlen

foundations in computer science and math, programming skills

Teaching staff

Dates ( Calendar view )

Frequency Weekday Time Format / Place Period  

Show passed dates >>

Subject assignments

Module Course Requirements  
39-Inf-AKS Anwendungen Kognitiver Systeme Maschinelles Lernen im Web oder Modern Data Analysis oder Softcomputing für die Bioinformatik Graded examination
Student information

The binding module descriptions contain further information, including specifications on the "types of assignments" students need to complete. In cases where a module description mentions more than one kind of assignment, the respective member of the teaching staff will decide which task(s) they assign the students.

Degree programme/academic programme Validity Variant Subdivision Status Semester LP  
Naturwissenschaftliche Informatik / Diplom (Enrollment until SoSe 2004) allgem.HS   HS

Erfolgreiches Bearbeiten der Übungen (2LP) sowie mündliche Prüfung (3LP)

exercises (2LP) and exam (3LP)

No eLearning offering available
Address:
WS2014_392219@ekvv.uni-bielefeld.de
This address can be used by teaching staff, their secretary's offices as well as the individuals in charge of course data maintenance to send emails to the course participants. IMPORTANT: All sent emails must be activated. Wait for the activation email and follow the instructions given there.
If the reference number is used for several courses in the course of the semester, use the following alternative address to reach the participants of exactly this: VST_48956947@ekvv.uni-bielefeld.de
Notes:
Additional notes on the electronic mailing lists
Last update basic details/teaching staff:
Friday, December 11, 2015 
Last update times:
Thursday, October 22, 2015 
Last update rooms:
Monday, August 25, 2014 
Type(s) / SWS (hours per week per semester)
lecture (V) / 2
Language
This lecture is taught in english
Department
Faculty of Technology
Questions or corrections?
Questions or correction requests for this course?
Planning support
Clashing dates for this course
Links to this course
If you want to set links to this course page, please use one of the following links. Do not use the link shown in your browser!
The following link includes the course ID and is always unique:
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=48956947
Send page to mobile
Click to open QR code
Scan QR code: Enlarge QR code
ID
48956947