The theory of discrete approximations provides a general mathematical
framework for analyzing convergence problems in numerical analysis.
We will develop the theory step by step and simultaneously apply it
to a series of numerical discretization methods:
finite difference methods for ordinary boundary value problems,
finite element methods for elliptic boundary value problems, and
quadrature methods for integral equations.
Some experience with numerical methods, e.g. one-step methods
for initial value problems, and some familiarity with basic
concepts of functional analysis is useful.
Diese Veranstaltung kann für das neustrukturierte Masterstudium Mathematik
als Modul 24-M-P1 oder 24-M-P2 gewählt werden. Zusammen mit Stoff im Umfang von
2 SWS einer weiteren Lehrveranstaltung kann es sowohl für den Master
als auch für das Diplom in Mathematik verwendet werden. Zu Einzelheiten
bitte den Veranstalter kontaktieren.
Frequency | Weekday | Time | Format / Place | Period | |
---|---|---|---|---|---|
weekly | Mi | 12-14 | V5-148 | 02.04.-13.07.2012 |
Module | Course | Requirements | |
---|---|---|---|
24-M-P1 Profilierung 1 | - | Graded examination | Student information |
The binding module descriptions contain further information, including specifications on the "types of assignments" students need to complete. In cases where a module description mentions more than one kind of assignment, the respective member of the teaching staff will decide which task(s) they assign the students.
Degree programme/academic programme | Validity | Variant | Subdivision | Status | Semester | LP | |
---|---|---|---|---|---|---|---|
Mathematik / Diplom | (Enrollment until SoSe 2008) | 6. | HS | ||||
Mathematik / Diplom | (Enrollment until SoSe 2008) | 8. | |||||
Mathematik / Diplom | (Enrollment until SoSe 2008) | Wahl | 5. | scheinfähig | |||
Mathematik / Diplom | (Enrollment until SoSe 2008) | 7. |