392118 Übungen zu Vertiefung Maschinelles Lernen (Ü) (WiSe 2021/2022)

Inhalt, Kommentar

Aufbauend auf dem Grundlagen-Modul "Neuronale Netze und Lernen", welches die grundlegende Theorie des maschinellen Lernens sowie einige grundlegende Ansätze behandelt hat, werden in diesem Modul weitere, komplexere Lernarchitekturen behandelt. Die Themen der Vorlesung umfassen insbesondere:
Ensemble-Verfahren - gewichtete Kombination mehrerer Lern-Module
Mixture-of-Experts - (hierarchische) Zuweisung von Subproblemen zu Experten-Modulen
Aktives Lernen
Reinforcement-Lernen
Partially Observable Markov Decision Processes (POMDPs)
Gaussian Processes: Bishop, Kapitel 6.4
Graphical Models
Sampling: Bishop, Kapitel 11

Übungen
Anstatt wöchentliche Übungszettel zu bearbeiten, sollen Sie bis Ende November eine Projektaufgabe realisieren: Suchen Sie eine Implementierung des Viola-Jones-Algorithmus heraus und wenden Sie ihn auf ein komplexes Klassifikationsproblem an. In Frage kommen z.B. Gesichtserkennung, Handerkennung oder sogar Hand-Postur-Erkennung, d.h. Klassifikation der Handstellung.
Datenbanken von Gesichtsbildern
Datenbank von Handposturen
Handposturerkennung mit AdaBoost und SIFT-Features (Full Text)

http://ni.www.techfak.uni-bielefeld.de/teaching/vertiefung-maschinelles-lernen

Teilnahmevoraussetzungen, notwendige Vorkenntnisse

Die Vorlesung wendet sich an einschlägig interessierte Studenten der Informatik, Mathematik und Linguistik im Hauptstudium. Neuronale Netze und Lernen

Literaturangaben

Bishop, Ch., "Pattern Recognition and Machine Learning", Springer
Mitchel, T., "Machine Learning",
Viola, P., Jones, M., "Robust Real-Time Face Detection", International Journal of Computer Vision 57(2), 137–154, 2004
Sutton & Barto, "Reinforcement Learning: An Introduction", MIT Press
Vorlesungsfolien POMDPs, W. Burgard, Uni Freiburg
David MacKay: "Gaussian Processes Basics" (video lecture)
Iain Murray: "Markov Chain Monte Carlo" (video lecture)

Externe Kommentarseite

http://www.zfl.uni-bielefeld.de/studium/module/techfak/msc_isy/#vertiefung_maschinelles_lernen

Lehrende

Termine ( Kalendersicht )

Rhythmus Tag Uhrzeit Format / Ort Zeitraum  
wöchentlich Fr 8-10 ONLINE   11.10.2021-04.02.2022
nicht am: 29.10.21 / 03.12.21 / 24.12.21 / 31.12.21 / 07.01.22

Verstecke vergangene Termine <<

Fachzuordnungen

Modul Veranstaltung Leistungen  
39-M-Inf-VML Vertiefung Maschinelles Lernen Vertiefung Maschinelles Lernen unbenotete Prüfungsleistung
benotete Prüfungsleistung
Studieninformation

Die verbindlichen Modulbeschreibungen enthalten weitere Informationen, auch zu den "Leistungen" und ihren Anforderungen. Sind mehrere "Leistungsformen" möglich, entscheiden die jeweiligen Lehrenden darüber.


Keine Konkretisierungen vorhanden
Lernraum (E-Learning)
Lernraum (E-Learning)
registrierte Anzahl: 54
Dies ist die Anzahl der Studierenden, die die Veranstaltung im Stundenplan gespeichert haben. In Klammern die Anzahl der über Gastaccounts angemeldeten Benutzer*innen.
Adresse:
WS2021_392118@ekvv.uni-bielefeld.de
Lehrende, ihre Sekretariate sowie für die Pflege der Veranstaltungsdaten zuständige Personen können über diese Adresse E-Mails an die Veranstaltungsteilnehmer*innen verschicken. WICHTIG: Sie müssen verschickte E-Mails jeweils freischalten. Warten Sie die Freischaltungs-E-Mail ab und folgen Sie den darin enthaltenen Hinweisen.
Falls die Belegnummer mehrfach im Semester verwendet wird können Sie die folgende alternative Verteileradresse nutzen, um die Teilnehmer*innen genau dieser Veranstaltung zu erreichen: VST_295591867@ekvv.uni-bielefeld.de
Reichweite:
37 Studierende direkt per E-Mail erreichbar
Hinweise:
Weitere Hinweise zu den E-Mailverteilern
Letzte Änderung Grunddaten/Lehrende:
Samstag, 9. Oktober 2021 
Letzte Änderung Zeiten:
Freitag, 9. Juli 2021 
Letzte Änderung Räume:
Freitag, 9. Juli 2021 
Art(en) / SWS
Übung (Ü) / 1
Einrichtung
Technische Fakultät
Fragen oder Korrekturen?
Fragen oder Korrekturwünsche zu dieser Veranstaltung?
Planungshilfen
Terminüberschneidungen für diese Veranstaltung
Link auf diese Veranstaltung
Wenn Sie diese Veranstaltungsseite verlinken wollen, so können Sie einen der folgenden Links verwenden. Verwenden Sie nicht den Link, der Ihnen in Ihrem Webbrowser angezeigt wird!
Der folgende Link verwendet die Veranstaltungs-ID und ist immer eindeutig:
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=295591867
Seite zum Handy schicken
Klicken Sie hier, um den QR Code zu zeigen
Scannen Sie den QR-Code: QR-Code vergrößern
ID
295591867