240023 Funktionentheorie (V) (WiSe 2019/2020)

Contents, comment

Themen (u.a.): komplex-differenzierbare Funktionen, Riemannsche Zahlenspäre und Möbiustranformationen, Potenzreihen, elementare Funktionen, komplexe Kurvenintegrale, Cauchyscher Integralsatz/formel und Konsequenzen, isolierte Singularitäten und Residuensatz, konforme Abbildungen, Riemannscher Abbildungssatz, ...

Bibliography

siehe Lernraum

Teaching staff

Dates ( Calendar view )

Frequency Weekday Time Format / Place Period  
weekly Mo 14-16 V2-205 07.10.2019-31.01.2020
not on: 12/23/19 / 12/30/19
weekly Do 12-14 H10 07.10.2019-31.01.2020
not on: 12/26/19 / 1/2/20

Hide passed dates <<

Subject assignments

Module Course Requirements  
24-A1 Advanced Module Mathematics 1 Aufbaumodul Mathematik 1 Vorlesung gemäß Modulbeschreibung Student information
- Graded examination Student information
24-A2 Advanced Module Mathematics 2 Aufbaumodul Mathematik 2 Vorlesung gemäß Modulbeschreibung Student information
- Graded examination Student information
24-B-PRO_ver1 Profile Module in Mathematics Profilierung Vorlesung gemäß Modulbeschreibung Graded examination
Student information
24-B-PSE-5a Structured Electives: Profile Module a (5 CP) Profilierung Strukturierte Ergänzung a (5LP) Vorlesung gemäß Modulbeschreibung Student information
24-B-PSE-5b Structured Electives: Profile Module b (5 CP) Profilierung Strukturierte Ergänzung b (5LP) Vorlesung gemäß Modulbeschreibung Student information
24-B-PSE_ver1 Structured Electives: Profile Module Profilierung Strukturierte Ergänzung Vorlesung gemäß Modulbeschreibung Graded examination
Student information
24-E Supplementary Module Mathematics Ergänzungsmodul Mathematik Vorlesung gemäß Modulbeschreibung Student information
24-E2 Supplementary Module Mathematics 2 Ergänzungsmodul Mathematik 2 Vorlesung Student information
24-M-GM Foundations in Mathematics Grundlagen Mathematik Spezialisierungskurs Mathematik Graded examination
Student information
24-SE Structured Electives Strukturierte Ergänzung Vorlesung 1 Student information
Vorlesung 2 Student information

The binding module descriptions contain further information, including specifications on the "types of assignments" students need to complete. In cases where a module description mentions more than one kind of assignment, the respective member of the teaching staff will decide which task(s) they assign the students.

Degree programme/academic programme Validity Variant Subdivision Status Semester LP  
Studieren ab 50    

Die Hausaufgaben werden wöchentlich über den Lernraum zur Verfügung gestellt.

Die Abschlusspruefung (im Rahmen der Portfolioleistung) ist eine mündliche Prüfung.
1. Pruefungszeitraum: 18.02.20 und 20.02.20
2. Pruefungszeitraum: 02.04.20 und 03.04.20

Die genauen Termine werden individuell per E-Mail vereinbart (fuer den ersten Pruefungszeitraum voraus. im Januar 2020)

No eLearning offering available
Address:
WS2019_240023@ekvv.uni-bielefeld.de
This address can be used by teaching staff, their secretary's offices as well as the individuals in charge of course data maintenance to send emails to the course participants. IMPORTANT: All sent emails must be activated. Wait for the activation email and follow the instructions given there.
If the reference number is used for several courses in the course of the semester, use the following alternative address to reach the participants of exactly this: VST_175807809@ekvv.uni-bielefeld.de
Notes:
Additional notes on the electronic mailing lists
Email archive
Number of entries 0
Open email archive
Last update basic details/teaching staff:
Monday, May 20, 2019 
Last update times:
Monday, July 29, 2019 
Last update rooms:
Monday, July 29, 2019 
Type(s) / SWS (hours per week per semester)
lecture (V) / 4
Department
Faculty of Mathematics
Questions or corrections?
Questions or correction requests for this course?
Planning support
Clashing dates for this course
Links to this course
If you want to set links to this course page, please use one of the following links. Do not use the link shown in your browser!
The following link includes the course ID and is always unique:
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=175807809
Send page to mobile
Click to open QR code
Scan QR code: Enlarge QR code
ID
175807809