241256 Rigid meromorphic cocycles III (S) (WiSe 2022/2023)

Short comment

Recently H.Darmon and J.Vonk initiated the theory of p-adic singular moduli for real quadratic fields. In this theory classical modular functions such as the j-invariant are replaced by so-called rigid meromorphic cocycles. These are SL2(Z[1/p])-invariant modular symbols with values in rigid meromorphic functions on Drinfeld’s p-adic upper half plane. One of their first results states that the divisor of a rigid meromorphic cocycle is supported on finitely many SL2(Z[1/p])-orbits of real quadratic points, i.e. points which generate real quadratic extensions of Q. This highly suggests that rigid meromorphic cocyles are a real quadratic analogue of Borcherds’ singular theta lifts of modular forms of weight 1/2. This approach does not generalize easily to a more general setup. The aim of this seminar is to follow L.Gehrmann's work "On Quaterionic Rigid Meromorphic", where he proves the algebraicity of divisors in a more general situation by purely cohomological methods.

Contents, comment

No comment available

Teaching staff

Dates ( Calendar view )

Frequency Weekday Time Format / Place Period  

Show passed dates >>

Subject assignments

Degree programme/academic programme Validity Variant Subdivision Status Semester LP  
Mathematik / Promotion    

No more requirements
No eLearning offering available
Address:
WS2022_241256@ekvv.uni-bielefeld.de
This address can be used by teaching staff, their secretary's offices as well as the individuals in charge of course data maintenance to send emails to the course participants. IMPORTANT: All sent emails must be activated. Wait for the activation email and follow the instructions given there.
If the reference number is used for several courses in the course of the semester, use the following alternative address to reach the participants of exactly this: VST_366638737@ekvv.uni-bielefeld.de
Notes:
Additional notes on the electronic mailing lists
Last update basic details/teaching staff:
Friday, July 15, 2022 
Last update times:
Wednesday, August 10, 2022 
Last update rooms:
Wednesday, August 10, 2022 
Type(s) / SWS (hours per week per semester)
seminar (S) / 2
Department
Faculty of Mathematics
Questions or corrections?
Questions or correction requests for this course?
Planning support
Clashing dates for this course
Links to this course
If you want to set links to this course page, please use one of the following links. Do not use the link shown in your browser!
The following link includes the course ID and is always unique:
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=366638737
Send page to mobile
Click to open QR code
Scan QR code: Enlarge QR code
ID
366638737