Module 24-M-PT-STSTP Selected Topics of Stochastic Processes

Faculty

Person responsible for module

Regular cycle (beginning)

Dieses Modul ist Teil einer langfristigen Gesamtlehrplanung für das Masterprogramm, die sicherstellt, dass in allen fünf Gebieten jedes Jahr jeweils mindestens Module im Umfang von 20 LP angeboten werden. Im Rahmen dieser Gesamtlehrplanung wird das Modul in unregelmäßigen Abständen angeboten.

Credit points and duration

10 Credit points

For information on the duration of the modul, refer to the courses of study in which the module is used.

Competencies

Non-official translation of the module descriptions. Only the German version is legally binding.

Students master advanced content and methods of the theory of Stochastic Processes, in particular they can independently carry out very complex proofs in this area requiring a higher level of mathematical expertise. They acquire basic tools related to weak convergence on spaces of functions and random walks or in ergodic theory. Concretely:

  • Students are able to define central concepts of the theory and apply them in context
  • Students know leading examples of theory and can use these examples to illustrate concepts and theorems.

Students will be introduced to current research questions in the area of Stochastic Processes. They are able to recognise and assess further development opportunities and research goals.
Furthermore, students recognise further-reaching connections to mathematical issues that have already been worked out. They can transfer and apply the knowledge and methods they have learnt so far to deeper mathematical problem areas. Students also expand their mathematical intuition as a result of more intensive study.
In combination with other in-depth modules, they will be able to write their own research papers, e.g. a master's thesis in the field of Stochastic Processes.
In the tutorials, students develop their ability to discuss mathematical topics and thus further prepare themselves for the requirements of the Master's module, in particular for the scientific discussion within the Master's seminar presentation and the defence of their Master's thesis.

Concretisation B:
If necessary, addition of special features

Content of teaching

Further teaching content from the area of stochastic processes can be:

I. Weak convergence on spaces of functions and random walks
(1) Weak convergence on spaces of continuous functions
(2) Functional CLT
(3) Skorohod embedding
(4) Convergence of empirical processes
(5) Analysis of boundary-crossing problems for random walks

or

II Ergodic theory and countable Markov chains
(1) Birkhoff-Khinchin theorem and ergodic sequences
(2) Renewal theory
(3) Classification of Markov chains and ergodic theorem
(4) Potential theory of Markov chains

This module prepares the content of a master's thesis.

Recommended previous knowledge

Solid knowledge of probability theory (24-M-PT-STP)

Necessary requirements

Explanation regarding the elements of the module

Module structure: 1 SL, 1 bPr 1

Courses

Lecture Stochastic Processes
Type lecture
Regular cycle Dieses Modul ist Teil einer langfristigen Gesamtlehrplanung für das Masterprogramm, die sicherstellt, dass in allen fünf Gebieten jedes Jahr jeweils mindestens Module im Umfang von 20 LP angeboten werden. Im Rahmen dieser Gesamtlehrplanung wird das Modul in unregelmäßigen Abständen angeboten.
Workload5 60 h (60 + 0)
LP 2 [Pr]
Tutorials Stochastic Processes
Type exercise
Regular cycle Dieses Modul ist Teil einer langfristigen Gesamtlehrplanung für das Masterprogramm, die sicherstellt, dass in allen fünf Gebieten jedes Jahr jeweils mindestens Module im Umfang von 20 LP angeboten werden. Im Rahmen dieser Gesamtlehrplanung wird das Modul in unregelmäßigen Abständen angeboten.
Workload5 90 h (30 + 60)
LP 3 [SL]

Study requirements

Allocated examiner Workload LP2
Teaching staff of the course Tutorials Stochastic Processes (exercise)

Regular completion of the exercises, each with a recognisable solution approach, as well as participation in the exercise groups for the module's lecture. As a rule, participation in the exercise group includes presenting solutions to exercises twice after being asked to do so as well as regular contributions to the scientific discussion in the exercise group, for example in the form of comments and questions on the proposed solutions presented. The organiser may replace some of the exercises with face-to-face exercises.

see above see above

Examinations

e-written examination o. written examination o. e-oral examination o. oral examination
Allocated examiner Teaching staff of the course Lecture Stochastic Processes (lecture)
Weighting 1
Workload 150h
LP2 5

(electronic) written examination in presence of usually 120 minutes, oral examination in presence or remote of usually 40 minutes, A remote electronic written examination is not permitted.

The module is used in these degree programmes:

Degree programme Profile Recom­mended start 3 Duration Manda­tory option 4
Mathematical Economics / Master of Science [FsB vom 28.02.2025] Mathematics 2. o. 3. one semester Compul­sory optional subject
Mathematical Economics / Master of Science [FsB vom 28.02.2025] Economics 2. o. 3. one semester Compul­sory optional subject
Mathematics / Master of Science [FsB vom 28.02.2025] 2. o. 3. one semester Compul­sory optional subject

Automatic check for completeness

The system can perform an automatic check for completeness for this module.


Legend

1
The module structure displays the required number of study requirements and examinations.
2
LP is the short form for credit points.
3
The figures in this column are the specialist semesters in which it is recommended to start the module. Depending on the individual study schedule, entirely different courses of study are possible and advisable.
4
Explanations on mandatory option: "Obligation" means: This module is mandatory for the course of the studies; "Optional obligation" means: This module belongs to a number of modules available for selection under certain circumstances. This is more precisely regulated by the "Subject-related regulations" (see navigation).
5
Workload (contact time + self-study)
SoSe
Summer semester
WiSe
Winter semester
SL
Study requirement
Pr
Examination
bPr
Number of examinations with grades
uPr
Number of examinations without grades
This academic achievement can be reported and recognised.