Jedes Wintersemester
10 Leistungspunkte
Die Angaben zur Moduldauer finden Sie bei den Studiengängen, in denen das Modul verwendet wird.
Die Studieren beherrschen weiterführende Inhalte und Methoden der Stochastischen Analysis, insbesondere können sie selbstständig sehr komplexe und ein hohes Maß an fachlichen Kompetenzen erfordernde Beweise in diesem Gebiet führen.Die Studierenden sind in der Lage, komplexe Zusammenhängen mithilfe probabilistischer Strukturen als Grundlage für Anwendungen zu modellieren und diese probabilistische Strukturen mathematisch zu analysieren, d.h. konkret:
Die Studierenden werden im Bereich der Stochastischen Analysis an aktuelle Forschungsfragen herangeführt. Sie können weitere Entwicklungsmöglichkeiten und Forschungsziele erfassen und einschätzen.
Ferner erkennen die Studierende weiter reichende Zusammenhänge zu bereits erarbeiteten mathematischen Sachverhalten. Sie können die bislang erlernten Kenntnisse und Methoden auf tiefer liegende mathematische Problemfelder übertragen und anwenden. Aufgrund einer intensiveren Auseinandersetzung erweitern die Studierende auch ihre mathematische Intuition.
Sie werden im Zusammenspiel mit weiteren vertiefenden Modulen fachlich und methodisch in der Lage sein, im Anschluss eigene Forschungsarbeiten, z. B. eine Masterarbeit im Bereich Wahrscheinlichkeitstheorie zu verfassen.
In den Übungen bauen die Studierende ihre Fähigkeit zur fachmathematischen Diskussion aus und bereiten sich so weiter auf die Anforderungen des Mastermoduls, insbesondere auf die fachliche Diskussion im Rahmen des Masterseminarvortrags und die Verteidigung ihrer Masterarbeit, vor.
Die folgenden weiterführenden Lehrinhalte sind obligatorisch:
Darüber hinaus können z.B. die folgenden Lehrinhalte behandelt werden:
Dieses Modul bereitet inhaltlich eine Masterarbeit vor.
Solide Kenntnisse in den Grundlagen stochastischer Prozesse (Theorie zeitstetige Martingale, Brownsche Bewegung) wie in 24-M-PT-STP
—
Modulstruktur: 1 SL, 1 bPr 1
Zuordnung Prüfende | Workload | LP2 |
---|---|---|
Lehrende der Veranstaltung
Tutorials Stochastic Analysis
(Übung)
Regelmäßiges Bearbeiten der Übungsaufgaben, jeweils mit erkennbarem Lösungsansatz sowie die Mitarbeit in den Übungsgruppen zu der Vorlesung des Moduls. Zu der Mitarbeit in der Übungsgruppe gehören in der Regel das zweimalige Vorrechnen von Übungsaufgaben nach Aufforderung sowie regelmäßige Beiträge zur fachlichen Diskussion in der Übungsgruppe, etwa in Form von fachlichen Kommentaren und Fragen zu den vorgestellten Lösungsvorschlägen. Die Veranstalterin/der Veranstalter kann einen Teil der Übungsaufgaben durch Präsenzübungen ersetzen. |
siehe oben |
siehe oben
|
(elektronische) Klausur in Präsenz von in der Regel 120 Minuten, mündliche Prüfung in Präsenz oder auf Distanz von in der Regel 40 Minuten. Eine elektronische Klausur auf Distanz ist nicht zulässig.
Studiengang | Profil | Empf. Beginn 3 | Dauer | Bindung 4 |
---|---|---|---|---|
Mathematical Economics / Master of Science [FsB vom 28.02.2025] | Mathematics | 1. o. 2. o. 3. | ein Semester | Wahlpflicht |
Mathematical Economics / Master of Science [FsB vom 28.02.2025] | Economics | 1. o. 2. o. 3. | ein Semester | Wahlpflicht |
Mathematics / Master of Science [FsB vom 28.02.2025] | 1. o. 2. o. 3. | ein Semester | Wahlpflicht |
In diesem Modul kann eine automatische Vollständigkeitsprüfung vom System durchgeführt werden.