Several complex problems arising from biology and computer science (e.g., sequence alignment, gene finding, inference for population sequence data) can not be solved at the same time efficiently and optimally by using deterministic methods. In such cases, stochastic methods are used to advantage. Building on the foundations of probability theory and statistics, this course lays the basis for stochastic computing (i.e., representation of distributions in the computer, computations with small probabilities, efficient generation of random numbers with given distribution, test of the quality of random number generators). As an important tool, the Markov chain Monte Carlo (MCMC) methods are presented via examples (Metropolis-Hastings, Gibbs sampling). Importance sampling methods and simulation of rare events are as well presented.
| Rhythmus | Tag | Uhrzeit | Format / Ort | Zeitraum | |
|---|---|---|---|---|---|
| wöchentlich | Do | 16-18 | C5-141 | 07.10.2024-31.01.2025
nicht am: 26.12.24 / 02.01.25 |
Verstecke vergangene Termine <<
| Datum | Uhrzeit | Format / Raum | Kommentar zum Prüfungstermin |
|---|---|---|---|
| Mittwoch, 12. Februar 2025 | 09-13 | H2 | Die Klausur beginnt um 10:00 Uhr! |
| Montag, 31. März 2025 | 09-13 | H9 | Die Zweitklausur startet um 10:00 Uhr! |
Verstecke vergangene Prüfungstermine <<
Die verbindlichen Modulbeschreibungen enthalten weitere Informationen, auch zu den "Leistungen" und ihren Anforderungen. Sind mehrere "Leistungsformen" möglich, entscheiden die jeweiligen Lehrenden darüber.