The lecture will introduce basic techniques in machine learning, in particular probability based methods. It starts by (re)-introducing regression in a Bayesian framework as maximum likelihood and maximum a posteriori estimationand proceeds by regarding parameter estimation as a probabilistic process. It introduces concept learning and some of its most popular and widespread applications, e.g. classifaction of data given in form of list of attributes and decision trees. Further topics are the general Expectation-Maximisation, in particular to optimize Gaussian mixture models
and Radial Basis Function networks.
Good knowledge of mathematics as taught in the first semesters is indispensible.
The lecture is part of the international track and will be given in English.
There will be lecture notes available.
Rhythmus | Tag | Uhrzeit | Format / Ort | Zeitraum |
---|
Datum | Uhrzeit | Format / Raum | Kommentar zum Prüfungstermin |
---|
Zeige vergangene Prüfungstermine >>
Modul | Veranstaltung | Leistungen | |
---|---|---|---|
39-Inf-ML_ver1 Grundlagen Maschinelles Lernen | Grundlagen Maschinellen Lernens | unbenotete Prüfungsleistung
benotete Prüfungsleistung |
Studieninformation |
Die verbindlichen Modulbeschreibungen enthalten weitere Informationen, auch zu den "Leistungen" und ihren Anforderungen. Sind mehrere "Leistungsformen" möglich, entscheiden die jeweiligen Lehrenden darüber.
Studiengang/-angebot | Gültigkeit | Variante | Untergliederung | Status | Sem. | LP | |
---|---|---|---|---|---|---|---|
Studieren ab 50 | - | - | - | - | - | - |
Diese Webseite verwendet Cookies und ähnliche Technologien. Einige davon sind essentiell, um die Funktionalität der Website zu gewährleisten, während andere uns helfen, die Website und Ihre Erfahrung zu verbessern. Falls Sie zustimmen, verwenden wir Cookies und Daten auch, um Ihre Interaktionen mit unserer Webseite zu messen. Sie können Ihre Einwilligung jederzeit unter Datenschutzerklärung einsehen und mit der Wirkung für die Zukunft widerrufen. Auf der Seite finden Sie auch zusätzliche Informationen zu den verwendeten Cookies und Technologien.