Modul 24-M-Opt Optimization for Quantitative Economics

Fakultät

Modulverantwortliche*r

Turnus (Beginn)

Jedes Wintersemester

Leistungspunkte und Dauer

7 Leistungspunkte

Die Angaben zur Moduldauer finden Sie bei den Studiengängen, in denen das Modul verwendet wird.

Kompetenzen

In diesem Modul werden die Studierenden in die mathematischen Grundlagen von (i) Konvergenz: Stetigkeit von Funktionen und die unterliegende topologische Struktur metrischer Räume und von (ii) Konvexität und Optimierung sowie deren Anwendung in ökonomischen Modellen eingeführt. Die Studierenden erlernen die Grundlagen der Theorie metrischer Räume und der konvexen Analysis. Dies führt sowohl zu einem tiefen Verständnis als auch zu einem Repertoire an Techniken, mit dessen Hilfe die Studierenden in die Lage versetzt werden, Optimierungsprobleme mit und ohne Nebenbedingungen zu behandeln.

Lehrinhalte

Dieses Modul besteht aus einer Vorlesung mit den folgenden Inhalten:

A. Konvergenz in metrischen Räumen

Metrische Räume, Abstand, normierte Vektorräume, offene und abgeschlossene Mengen, Folgen in metrischen Räumen, Stetigkeit, gleichmäßige Stetigkeit, kompakte Mengen in metrischen Räumen, vollständige Räume, Kontraktionen, endlich-dimensionale Vektorräume. Ergänzend zur Analysis: Frechet-Differenzierbarkeit und der Satz über implizite Funktionen

B. Konvexität und Optimierung

B.1. Konvexität von Mengen und Funktionen. Konvexe Mengen. Beispiele: Budget Mengen, Kugeln, Produktionsmengen. Konvexe und konkave Funktionen, Graphen, Epigraph und Hypograph. quasikonvexe und quasikonkave Funktionen. strikt konvexe und quasi konvexe Funktionen. Charakterisierung konvexer Funktionen mittels der ersten Ableitung.Charakterisierung konvexer Funktionen mittels der zweiten Ableitung, topologische Eigenschaften konvexer Mengen. Projektionen auf abgeschlossene Mengen. Trennungssätze. Orthogonalität und Polarität. Bipolar-Theorem. Farkas Lemma.

B.2. Optimierung unter Nebenbedingungen

B.2.1. Optimierung ohne Nebenbedingungen. Globales und lokales Maximum (Minimum). Notwendige Bedinungen erster Ordnung. Notwendige und hinreichende Bedinungen zweiter Ordnung. Globale Maxima für konkave (konvexe) Funktionen. Beispiele

B.2.2. Optimierung unter Nebenbedingungen. Konvexitätsbedingungen und Slater Bedingung. Kuhn-Tucker Problem in konvexen Programmen (ohne Beweis). Anwendungen des Kuhn-Tucker Theorems in Haushalts- und Prodouktionstheorie. Weitere Beispiele der Anwendung des Kuhn-Tucker Theorems. Lineare Programmierung. Quadratische Programmierung

Literatur:
Simon, C., Blume, L., Mathematics for Economists, (1994) Norton.De La Fuente, A., Mathematical Methods and Models for Economists, 2nd Ed. (2005) Cambridge University Press.

Empfohlene Vorkenntnisse

Notwendige Voraussetzungen

Erläuterung zu den Modulelementen

Modulstruktur: 1 SL, 1 bPr 1

Veranstaltungen

Optimization
Art Vorlesung
Turnus WiSe
Workload5 90 h (60 + 30)
LP 3 [Pr]
Übung zu Optimization
Art Übung
Turnus WiSe
Workload5 60 h (30 + 30)
LP 2 [SL]

Studienleistungen

Zuordnung Prüfende Workload LP2
Lehrende der Veranstaltung Übung zu Optimization (Übung)

Regelmäßiges Bearbeiten der Übungsaufgaben mit jeweils erkennbarem Lösungsansatz. Mitarbeit in den Übungsgruppen (Zweimaliges Vorrechnen von Übungsaufgaben nach Aufforderung. Die Veranstalterin/der Veranstalter kann einen Teil der Übungsaufgaben durch Präsenzübungen ersetzen).

siehe oben siehe oben

Prüfungen

Klausur o. mündliche Prüfung
Zuordnung Prüfende Lehrende der Veranstaltung Optimization (Vorlesung)
Gewichtung 1
Workload 60h
LP2 2

Klausur im Umfang von in der Regel 90 Minuten oder mündliche Prüfung von in der Regel 20-30 Minuten.

In diesen Studiengängen wird das Modul verwendet:

Studiengang Profil Empf. Beginn 3 Dauer Bindung 4
Quantitative Economics / Master of Science [FsB vom 15.02.2013 mit Änderungen vom 01.07.2015 und 31.03.2023] 1. ein Semes­ter Pflicht
Quantitative Economics / Master of Science [FsB vom 15.02.2013 mit Änderungen vom 01.07.2015 und 31.03.2023] International Track 1. ein Semes­ter Pflicht

Automatische Vollständigkeitsprüfung

In diesem Modul kann eine automatische Vollständigkeitsprüfung vom System durchgeführt werden.


Legende

1
Die Modulstruktur beschreibt die zur Erbringung des Moduls notwendigen Prüfungen und Studienleistungen.
2
LP ist die Abkürzung für Leistungspunkte.
3
Die Zahlen in dieser Spalte sind die Fachsemester, in denen der Beginn des Moduls empfohlen wird. Je nach individueller Studienplanung sind gänzlich andere Studienverläufe möglich und sinnvoll.
4
Erläuterungen zur Bindung: "Pflicht" bedeutet: Dieses Modul muss im Laufe des Studiums verpflichtend absolviert werden; "Wahlpflicht" bedeutet: Dieses Modul gehört einer Anzahl von Modulen an, aus denen unter bestimmten Bedingungen ausgewählt werden kann. Genaueres regeln die "Fächerspezifischen Bestimmungen" (siehe Navigation).
5
Workload (Kontaktzeit + Selbststudium)
SoSe
Sommersemester
WiSe
Wintersemester
SL
Studienleistung
Pr
Prüfung
bPr
Anzahl benotete Modul(teil)prüfungen
uPr
Anzahl unbenotete Modul(teil)prüfungen
Diese Leistung kann gemeldet und verbucht werden.