240031 Proseminar Kombinatorik (PS) (WiSe 2021/2022)

Short comment

https://www.math.uni-bielefeld.de/~jsauter/PS-Kombinatorik.html
findet vor Ort statt

Contents, comment

Algebraische Kombinatorik ist ein Teilbereich der diskreten Mathematik, der sich mit Abzaehhlungen mathematischer Objekte beschaeftigt.
Fuer uns bedeutet algebraisch hier: 1. Wir benutzen lineare Algebra fuer die Loesung von Problemen und 2. Wir benutzen Gruppen, um Symmetrien von Objekten zu beruecksichtigen.
Das Proseminar behandelt verschiedene Themen: Allgemeine Grundlagen, Graphentheorie, partiell geordnete Mengen (sogenannte Posets) und Mengen mit Gruppenwirkungen.
Alle anspruchvolleren Themen haben das Buch von Stanley ,Algebraic Combinatorics, (english) als Quelle. Die elementareren Vortraege beruhen auf den drei deutschen Quellen.

Vortragsliste:
(1) Elementare Zaehlkoeffizienten
(2) Erzeugenden Funktionen
(3) Die symmetrische Gruppe
(4) Einfuehrung von Graphen
(5) Wege in Graphen
(6) Wege in n-Wuerfeln
(7) Einfuehrung von Gruppenoperationen
(8) Polya Theorie
(9) Einfuehrung von partiell geordneten Mengen
(10) Satz von Sperner
(11) Gruppenaktionen auf der Booleschen Algebra
(12) Young Diagramme und q-binomiale Koeffizienten
(13) Der Matrix-Baum Satz
(14) Gerichtete Euler Graphen

Requirements for participation, required level

Linear Algebra 1+2, etwa Analysis (Folgen und Reihen)

Bibliography

1) Aigner, Martin, Diskrete Mathematik
2) Beutelspacher, Albrecht und Zschiegner, Marc-Alexander G, Diskrete Mathematik fuer Einsteiger
Springer, 2014 (5.Auflage)
3) Stanley, Richard Peter, Algebraic Combinatorics
4) Taraz, Anusch, Diskrete Mathematik

zusaetzlich: Standardlehrbuecher der Algebra (etwa Meyberg, Karpfinger)

External comments page

https://www.math.uni-bielefeld.de/~jsauter/PS-Kombinatorik.html

Teaching staff

Dates ( Calendar view )

Frequency Weekday Time Format / Place Period  

Show passed dates >>

Subject assignments

Module Course Requirements  
24-B-GEO_ver1 Geometrie (Gym/Ge) Proseminar Study requirement
Ungraded examination
Student information
24-B-PX Praxismodul Proseminar Study requirement
Ungraded examination
Student information
24-E Ergänzungsmodul Mathematik Proseminar Study requirement
Ungraded examination
Student information

The binding module descriptions contain further information, including specifications on the "types of assignments" students need to complete. In cases where a module description mentions more than one kind of assignment, the respective member of the teaching staff will decide which task(s) they assign the students.


No more requirements
E-Learning Space
E-Learning Space
Registered number: 17
This is the number of students having stored the course in their timetable. In brackets, you see the number of users registered via guest accounts.
Limitation of the number of participants:
Limited number of participants: 15
Address:
WS2021_240031@ekvv.uni-bielefeld.de
This address can be used by teaching staff, their secretary's offices as well as the individuals in charge of course data maintenance to send emails to the course participants. IMPORTANT: All sent emails must be activated. Wait for the activation email and follow the instructions given there.
If the reference number is used for several courses in the course of the semester, use the following alternative address to reach the participants of exactly this: VST_290235964@ekvv.uni-bielefeld.de
Coverage:
11 Students to be reached directly via email
Notes:
Additional notes on the electronic mailing lists
Email archive
Number of entries 0
Open email archive
Last update basic details/teaching staff:
Thursday, July 1, 2021 
Last update times:
Wednesday, September 29, 2021 
Last update rooms:
Wednesday, September 29, 2021 
Type(s) / SWS (hours per week per semester)
proseminar (PS) / 2
Department
Faculty of Mathematics
Questions or corrections?
Questions or correction requests for this course?
Planning support
Clashing dates for this course
Links to this course
If you want to set links to this course page, please use one of the following links. Do not use the link shown in your browser!
The following link includes the course ID and is always unique:
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=290235964
Send page to mobile
Click to open QR code
Scan QR code: Enlarge QR code
ID
290235964