Modul 39-Inf-AOpt Applied Optimisation

Fakultät

Modulverantwortliche*r

Turnus (Beginn)

Jedes Wintersemester

Leistungspunkte und Dauer

5 Leistungspunkte

Die Angaben zur Moduldauer finden Sie bei den Studiengängen, in denen das Modul verwendet wird.

Kompetenzen

Die Studierenden erlernen in den Vorlesungen und Übungen ein bestimmtes Problem als Optimierungsproblem zu formulieren und dessen Eigenschaften zu identifizieren. Abhängig von den Eigenschaften eines Problems können die Studierenden einen geeigneten Problemlöser auswählen und kennen die Eigenschaften gefundener Lösungen. Studierende können beliebte Toolboxen verwenden. Das Modul beinhaltet eine Klausur zu Semesterende.

Lehrinhalte

Das Ziel ist es, wichtige Modelle zur Formulierung von Optimierungsproblemen und wichtige algorithmische Ansätze zur Lösung dieser Probleme abzudecken. Dazu gehören Optimierung unter Berücksichtigung von Bedingungen (contraint optimization) sowie ohne Bedingungen (unconstraint optimization), lineare und konvexe Optimierung, Dualität, nichtlineare Optimierung, diskrete Optimierung und Relaxation. Einige wichtige Methoden werden behandelt, darunter konjugierte Gradienten, Quasi-Newton-Methoden wie LBFGS, innere Punktmethoden, Lagrange-Multiplikatoren und Barrierefunktionen sowie beispielhafte globale Methoden wie CMA-ES.

Empfohlene Vorkenntnisse

Notwendige Voraussetzungen

Erläuterung zu den Modulelementen

Modulstruktur: 1 bPr 1

Veranstaltungen

Applied Optimisation
Art Übung
Turnus WiSe
Workload5 60 h (30 + 30)
LP 2
Applied Optimisation
Art Vorlesung
Turnus WiSe
Workload5 60 h (30 + 30)
LP 2 [Pr]

Prüfungen

Portfolio mit Abschlussprüfung
Zuordnung Prüfende Lehrende der Veranstaltung Applied Optimisation (Vorlesung)
Gewichtung 1
Workload 30h
LP2 1

Portfolio aus Übungs- oder Programmieraufgaben, die veranstaltungsbegleitend und in der Regel wöchentlich gestellt werden, und Abschlussklausur (60 Minuten) oder mündlicher Abschlussprüfung (in der Regel 15 Minunten). Die Übungsaufgaben ergänzen und vertiefen den Inhalt der Vorlesung.
Nachweis einer ausreichenden Zahl korrekt gelöster Übungsaufgaben (in der Regel 50% der im Semester für das Lösen der Aufgaben erzielbaren Punkte).
Die abschließende mündliche Prüfung bezieht sich auf den Stoff der Vorlesung und der Übungen.

In diesen Studiengängen wird das Modul verwendet:

Studiengang Profil Empf. Beginn 3 Dauer Bindung 4
Data Science / Master of Science [FsB vom 06.04.2018 mit Änderungen vom 01.07.2019, 02.03.2020, 21.03.2023 und 10.12.2024] Variante 1 1. ein Semes­ter Pflicht
Data Science / Master of Science [FsB vom 06.04.2018 mit Änderungen vom 01.07.2019, 02.03.2020, 21.03.2023 und 10.12.2024] Variante 2 1. ein Semes­ter Pflicht

Automatische Vollständigkeitsprüfung

In diesem Modul kann eine automatische Vollständigkeitsprüfung vom System durchgeführt werden.


Legende

1
Die Modulstruktur beschreibt die zur Erbringung des Moduls notwendigen Prüfungen und Studienleistungen.
2
LP ist die Abkürzung für Leistungspunkte.
3
Die Zahlen in dieser Spalte sind die Fachsemester, in denen der Beginn des Moduls empfohlen wird. Je nach individueller Studienplanung sind gänzlich andere Studienverläufe möglich und sinnvoll.
4
Erläuterungen zur Bindung: "Pflicht" bedeutet: Dieses Modul muss im Laufe des Studiums verpflichtend absolviert werden; "Wahlpflicht" bedeutet: Dieses Modul gehört einer Anzahl von Modulen an, aus denen unter bestimmten Bedingungen ausgewählt werden kann. Genaueres regeln die "Fächerspezifischen Bestimmungen" (siehe Navigation).
5
Workload (Kontaktzeit + Selbststudium)
SoSe
Sommersemester
WiSe
Wintersemester
SL
Studienleistung
Pr
Prüfung
bPr
Anzahl benotete Modul(teil)prüfungen
uPr
Anzahl unbenotete Modul(teil)prüfungen
Diese Leistung kann gemeldet und verbucht werden.