Module 31-M-ISDA Introduction to Statistical Data Analysis

Faculty

Person responsible for module

Regular cycle (beginning)

Every winter semester

Credit points and duration

8 Credit points

For information on the duration of the modul, refer to the courses of study in which the module is used.

Competencies

Die Studierenden sollen in den beiden zu besuchenden Vorlesungen statistische Denkweisen verinnerlichen und mit realen Datenproblemen umgehen können. Im Modul lernen die Studierenden grundlegende Methoden der multivariate Datenanalyse kennen. Insbesondere verschiedene Konzepte der Modellierung der Zusammenhänge verschiedener Variabler werden erlernt. In dieser Hinsicht stellt die klassische lineare Regressionsanalyse einen Schwerpunkt dar. Die Studierenden sollen die etablierten statistischen Verfahren zur (wirtschafts-)wissenschaftlichen Datenanalyse beherrschen und ihre Grenzen kennen. Darüber hinaus sollen sie lernen, fachspezifische Fragestellungen mit dafür geeigneten Daten und Methoden zu adressieren.

In both courses included in the module students internalize statistical thinking and learn to deal with typical problems involved in working with real life data. Basic methods of the multivariate analysis of data set are presented focusing on the modeling of the interaction between different variables, in particular in the context of the classical linear regression model. Students will learn to master established methods for the analysis of (economic) data sets including an assessment of limits of the methods. Moreover students learn to address research questions by using appropriate data sets and methods.

Content of teaching

In den beiden zu besuchenden Vorlesungen des Moduls geht es einerseits um die Erweiterung und Vertiefung von bereits erworbenen statistischen Fähigkeiten, andererseits sollen moderne und rechnerintensive Methoden zum Einsatz kommen. In diesem Modul werden zunächst die Grundlagen ökonometrischer Einzelgleichungsmodelle (des allgemeinen und des verallgemeinerten linearen Modells) behandelt: Spezifikation, Parameterschätzung, Test, Konfidenzintervalle und Prognose. Dabei geht es sowohl um die theoretische Fundierung als auch die empirische Nutzung dieser Modelle. Die statistische Herangehensweise soll außerdem um wahrscheinlichkeitsbasierte Konzepte vervollständigt werden, um den Studierenden ein komplettes Spektrum von datenanalytischen Werkzeugen bereitzustellen.

Both courses in this module extend previously acquired skills in statistical modeling, both theoretically as well as in hands-on applications. In this module the foundations of econometrical single equation models (ordinary and generalized least squares) are discussed: specification, parameter estimation, statistical tests, confidence intervals and prediction. Both the theoretical basis as well as applications are discussed. Furthermore the statistical research methodology is extended using probability theoretical concepts, in order to provide a complete spectrum of scientific tools for data analysis.

Recommended previous knowledge

Necessary requirements

Explanation regarding the elements of the module

Module structure: 1 bPr 1

Courses

Multivariate Methods
Type lecture o. lecture with exercises
Regular cycle WiSe
Workload5 120 h (30 + 90)
LP 4
Regression Analysis
Type lecture o. lecture with exercises
Regular cycle WiSe
Workload5 120 h (30 + 90)
LP 4

Examinations

written examination o. e-oral examination o. oral examination
Allocated examiner Person responsible for module examines or determines examiner
Weighting 1
Workload -
LP2 -

1,5-stündige Klausur oder 15 - 20-minütige mündliche (e-)Prüfung.
Der/die Modulverantwortliche bestimmt eine oder mehrere prüfungsberechtigte Person/en als Prüfer/innen der Modulprüfung.

The module is used in these degree programmes:

Degree programme Profile Recom­mended start 3 Duration Manda­tory option 4
Data Science / Master of Science [FsB vom 06.04.2018 mit Änderungen vom 01.07.2019, 02.03.2020, 21.03.2023 und 10.12.2024] Variante 2 1. one semester Obli­gation

Automatic check for completeness

The system can perform an automatic check for completeness for this module.


Legend

1
The module structure displays the required number of study requirements and examinations.
2
LP is the short form for credit points.
3
The figures in this column are the specialist semesters in which it is recommended to start the module. Depending on the individual study schedule, entirely different courses of study are possible and advisable.
4
Explanations on mandatory option: "Obligation" means: This module is mandatory for the course of the studies; "Optional obligation" means: This module belongs to a number of modules available for selection under certain circumstances. This is more precisely regulated by the "Subject-related regulations" (see navigation).
5
Workload (contact time + self-study)
SoSe
Summer semester
WiSe
Winter semester
SL
Study requirement
Pr
Examination
bPr
Number of examinations with grades
uPr
Number of examinations without grades
This academic achievement can be reported and recognised.

Sidebar

Elements of the module

Courses

Examinations

Programme of lectures (eKVV)

Programme of lectures (eKVV)