This seminar explores the topic of reinforcement learning agents and how they can be optimised using human cognitive mechanisms such as abstraction, intrinsic motivation, mental simulation, few-shot problem solving, transfer learning or goal-directed planning. We will start with the field of Reinforcement Learning and then move on to research on cognitive abilities. Finally, research combining these two fields will be discussed. Each student or pairs of students (depending on the number of participants) has to present (~15 min.) a research paper in the seminar. In addition, the exercises will be used to work on a project where an implementation of cognitive mechanisms in RL is carried out, as well as a report on the implementation including a theoretical background. The presentation, implementation and report are part of the “Prüfungsleistung” of the seminar and the exercise. Some programming experience in Python is recommended.
| Rhythmus | Tag | Uhrzeit | Format / Ort | Zeitraum | |
|---|---|---|---|---|---|
| wöchentlich | Mo | 12-14 | CITEC 2.015 | 13.04.-24.07.2026 |
| Modul | Veranstaltung | Leistungen | |
|---|---|---|---|
| 39-Inf-KR Cognitive Computing / Kognitives Rechnen Cognitive Computing / Kognitives Rechnen | Angewandtes Kognitives Rechnen | Studieninformation | |
| - | unbenotete Prüfungsleistung | Studieninformation | |
| 39-Inf-WP-KI-x Künstliche Intelligenz (Schwerpunkt) Künstliche Intelligenz (Schwerpunkt) | Vertiefendes Seminar | Studieninformation | |
| - | benotete Prüfungsleistung | Studieninformation | |
| 39-M-Inf-VKI Vertiefung Künstliche Intelligenz Vertiefung Künstliche Intelligenz | Spezielle Themen der Künstlichen Intelligenz | unbenotete Prüfungsleistung
benotete Prüfungsleistung |
Studieninformation |
Die verbindlichen Modulbeschreibungen enthalten weitere Informationen, auch zu den "Leistungen" und ihren Anforderungen. Sind mehrere "Leistungsformen" möglich, entscheiden die jeweiligen Lehrenden darüber.