392117 Vertiefung Maschinelles Lernen (V) (WiSe 2013/2014)

Contents, comment

Aufbauend auf dem Grundlagen-Modul "Neuronale Netze und Lernen", welches die grundlegende Theorie des maschinellen Lernens sowie einige grundlegende Ansätze behandelt hat, werden in diesem Modul weitere, komplexere Lernarchitekturen behandelt. Die Themen der Vorlesung umfassen insbesondere:
Ensemble-Verfahren - gewichtete Kombination mehrerer Lern-Module
Mixture-of-Experts - (hierarchische) Zuweisung von Subproblemen zu Experten-Modulen
Aktives Lernen
Reinforcement-Lernen
Partially Observable Markov Decision Processes (POMDPs)
Gaussian Processes: Bishop, Kapitel 6.4
Graphical Models
Sampling: Bishop, Kapitel 11

Übungen
Anstatt wöchentliche Übungszettel zu bearbeiten, sollen Sie bis Ende November eine Projektaufgabe realisieren: Suchen Sie eine Implementierung des Viola-Jones-Algorithmus heraus und wenden Sie ihn auf ein komplexes Klassifikationsproblem an. In Frage kommen z.B. Gesichtserkennung, Handerkennung oder sogar Hand-Postur-Erkennung, d.h. Klassifikation der Handstellung.
Datenbanken von Gesichtsbildern
Datenbank von Handposturen
Handposturerkennung mit AdaBoost und SIFT-Features (Full Text)

http://ni.www.techfak.uni-bielefeld.de/teaching/vertiefung-maschinelles-lernen

Requirements for participation, required level

Die Vorlesung wendet sich an einschlägig interessierte Studenten der Informatik, Mathematik und Linguistik im Hauptstudium. Neuronale Netze und Lernen

Bibliography

Bishop, Ch., "Pattern Recognition and Machine Learning", Springer
Mitchel, T., "Machine Learning",
Viola, P., Jones, M., "Robust Real-Time Face Detection", International Journal of Computer Vision 57(2), 137–154, 2004
Sutton & Barto, "Reinforcement Learning: An Introduction", MIT Press
Vorlesungsfolien POMDPs, W. Burgard, Uni Freiburg
David MacKay: "Gaussian Processes Basics" (video lecture)
Iain Murray: "Markov Chain Monte Carlo" (video lecture)

External comments page

http://www.zfl.uni-bielefeld.de/studium/module/techfak/msc_isy/#vertiefung_maschinelles_lernen

Teaching staff

Dates ( Calendar view )

Frequency Weekday Time Format / Place Period  
weekly Do 08-10 U5-133 14.10.2013-07.02.2014
not on: 12/26/13

Hide passed dates <<

Subject assignments

Module Course Requirements  
39-M-Inf-VML Vertiefung Maschinelles Lernen Vertiefung Maschinelles Lernen Student information

The binding module descriptions contain further information, including specifications on the "types of assignments" students need to complete. In cases where a module description mentions more than one kind of assignment, the respective member of the teaching staff will decide which task(s) they assign the students.

Degree programme/academic programme Validity Variant Subdivision Status Semester LP  
Intelligente Systeme / Master (Enrollment until SoSe 2012) Vertiefung Maschinelles Lernen Wahlpflicht 1. 5 benotet  
Naturwissenschaftliche Informatik / Diplom (Enrollment until SoSe 2004) Robotik; Physik; Biologie; NNet; ME   HS
Naturwissenschaftliche Informatik / Master (Enrollment until SoSe 2012) Vertiefung Maschinelles L Wahlpflicht 1. 5 benotet  

Anzahl Einzelleistungen (benotet und unbenotet)
eine benotete Einzelleistung
Prüfungsformen
Variante 1:
benotete mündliche Prüfung über die Inhalte der Vorlesung
Variante 2:
Portfolio aus Übungsaufgaben, die veranstaltungsbezogen gestellt werden. Note wird aus Durchschnittsleistung
(Vergabe von Bewertungspunkten) von zwei Tafelpräsentationen bearbeiteter Übungsaufgaben gebildet.
Voraussetzungen für die Vergabe von Leistungspunkten
Variante 1: Bestehen der mündlichen Prüfung ergibt 5 LP.
Variante 2: Erfolgreiches Bearbeiten der Übungsaufgaben und Bestehen der Tafelpräsentation ergibt 5 LP.

No eLearning offering available
Registered number: 22
This is the number of students having stored the course in their timetable. In brackets, you see the number of users registered via guest accounts.
Address:
WS2013_392117@ekvv.uni-bielefeld.de
This address can be used by teaching staff, their secretary's offices as well as the individuals in charge of course data maintenance to send emails to the course participants. IMPORTANT: All sent emails must be activated. Wait for the activation email and follow the instructions given there.
If the reference number is used for several courses in the course of the semester, use the following alternative address to reach the participants of exactly this: VST_37854682@ekvv.uni-bielefeld.de
Coverage:
6 Students to be reached directly via email
Notes:
Additional notes on the electronic mailing lists
Last update basic details/teaching staff:
Friday, December 11, 2015 
Last update times:
Thursday, September 19, 2013 
Last update rooms:
Thursday, September 19, 2013 
Type(s) / SWS (hours per week per semester)
lecture (V) / 2
Department
Faculty of Technology
Questions or corrections?
Questions or correction requests for this course?
Planning support
Clashing dates for this course
Links to this course
If you want to set links to this course page, please use one of the following links. Do not use the link shown in your browser!
The following link includes the course ID and is always unique:
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=37854682
Send page to mobile
Click to open QR code
Scan QR code: Enlarge QR code
ID
37854682