240079 Kommutative Algebra (V) (WiSe 2011/2012)

Contents, comment

Kommutative Algebra

Kommutative Algebra ist die Theorie kommutativer Ringe, ihrer
Ideale und Moduln. Sie stellt essentielles Handwerkszeug für
viele Gebiete der modernen Mathematik zur Verfügung, etwa die
algebraische Zahlentheorie und algebraische Geometrie.

Die Vorlesung wird einige grundlegende Aspekte dieser klassischen
Theorie entwickeln, etwa Primärzerlegung, Noethersche und
Artinsche Ringe, Diskrete Bewertungs- und Dedekindringe,
Vervollständigungen und Dimensionstheorie.

Die Vorlesung setzt Algebrakenntnisse, etwa im Umfang
einer "Algebra 1"-Vorlesung, voraus, und wird Prof. Bux' "Algebra
2"-Vorlesung komplementieren.

Ich plane, im SoSe 2012 ein Bachelor-Seminar anzubieten, das
Verbindungen der kommutativen Algebra mit Gebieten der
Kombinatorik erkundet.

Bibliography

1. M. F. Atiyah, I. G. MacDonald, Introduction to Commutative Algebra,
Westview Press, 1969

2. H. Matsumura, Commutative ring theory, Cambridge University Press, 1989

Teaching staff

Dates ( Calendar view )

Frequency Weekday Time Format / Place Period  

Show passed dates >>

Subject assignments

Degree programme/academic programme Validity Variant Subdivision Status Semester LP  
Mathematik / Bachelor (Enrollment until SoSe 2011) Kernfach MM09a Wahlpflicht 4. 5. 7 benotet  
Mathematik / Diplom (Enrollment until SoSe 2008) Wahlpflicht 5. 6. 7. 8. HS
Mathematik / Master (Enrollment until SoSe 2011) MM01S Wahlpflicht 1. 9 unbenotet  
Mathematik / Master (Enrollment until SoSe 2011) MM05S Wahlpflicht 1. 9 benotet  
Studieren ab 50    
Wirtschaftsmathematik (1-Fach) / Bachelor (Enrollment until SoSe 2011) M.WM.14 Wahlpflicht 5. 6. 7 benotet  

No more requirements
No eLearning offering available
eKVV participant management:
eKVV participant management is used for this course.
Show details
Address:
WS2011_240079@ekvv.uni-bielefeld.de
This address can be used by teaching staff, their secretary's offices as well as the individuals in charge of course data maintenance to send emails to the course participants. IMPORTANT: All sent emails must be activated. Wait for the activation email and follow the instructions given there.
If the reference number is used for several courses in the course of the semester, use the following alternative address to reach the participants of exactly this: VST_27594100@ekvv.uni-bielefeld.de
Notes:
Additional notes on the electronic mailing lists
Last update basic details/teaching staff:
Friday, December 11, 2015 
Last update times:
Monday, September 19, 2011 
Last update rooms:
Monday, September 19, 2011 
Type(s) / SWS (hours per week per semester)
lecture (V) / 4
Department
Faculty of Mathematics
Questions or corrections?
Questions or correction requests for this course?
Planning support
Clashing dates for this course
Links to this course
If you want to set links to this course page, please use one of the following links. Do not use the link shown in your browser!
The following link includes the course ID and is always unique:
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=27594100
Send page to mobile
Click to open QR code
Scan QR code: Enlarge QR code
ID
27594100